Commit Graph

2182 Commits

Author SHA1 Message Date
SeongJae Park
e4779015fd timers: implement usleep_idle_range()
Patch series "mm/damon: Fix fake /proc/loadavg reports", v3.

This patchset fixes DAMON's fake load report issue.  The first patch
makes yet another variant of usleep_range() for this fix, and the second
patch fixes the issue of DAMON by making it using the newly introduced
function.

This patch (of 2):

Some kernel threads such as DAMON could need to repeatedly sleep in
micro seconds level.  Because usleep_range() sleeps in uninterruptible
state, however, such threads would make /proc/loadavg reports fake load.

To help such cases, this commit implements a variant of usleep_range()
called usleep_idle_range().  It is same to usleep_range() but sets the
state of the current task as TASK_IDLE while sleeping.

Link: https://lkml.kernel.org/r/20211126145015.15862-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211126145015.15862-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-12-10 17:10:55 -08:00
Frederic Weisbecker
53e87e3cdc timers/nohz: Last resort update jiffies on nohz_full IRQ entry
When at least one CPU runs in nohz_full mode, a dedicated timekeeper CPU
is guaranteed to stay online and to never stop its tick.

Meanwhile on some rare case, the dedicated timekeeper may be running
with interrupts disabled for a while, such as in stop_machine.

If jiffies stop being updated, a nohz_full CPU may end up endlessly
programming the next tick in the past, taking the last jiffies update
monotonic timestamp as a stale base, resulting in an tick storm.

Here is a scenario where it matters:

0) CPU 0 is the timekeeper and CPU 1 a nohz_full CPU.

1) A stop machine callback is queued to execute somewhere.

2) CPU 0 reaches MULTI_STOP_DISABLE_IRQ while CPU 1 is still in
   MULTI_STOP_PREPARE. Hence CPU 0 can't do its timekeeping duty. CPU 1
   can still take IRQs.

3) CPU 1 receives an IRQ which queues a timer callback one jiffy forward.

4) On IRQ exit, CPU 1 schedules the tick one jiffy forward, taking
   last_jiffies_update as a base. But last_jiffies_update hasn't been
   updated for 2 jiffies since the timekeeper has interrupts disabled.

5) clockevents_program_event(), which relies on ktime_get(), observes
   that the expiration is in the past and therefore programs the min
   delta event on the clock.

6) The tick fires immediately, goto 3)

7) Tick storm, the nohz_full CPU is drown and takes ages to reach
   MULTI_STOP_DISABLE_IRQ, which is the only way out of this situation.

Solve this with unconditionally updating jiffies if the value is stale
on nohz_full IRQ entry. IRQs and other disturbances are expected to be
rare enough on nohz_full for the unconditional call to ktime_get() to
actually matter.

Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20211026141055.57358-2-frederic@kernel.org
2021-12-02 15:07:22 +01:00
Michael Pratt
ca7752caea posix-cpu-timers: Clear task::posix_cputimers_work in copy_process()
copy_process currently copies task_struct.posix_cputimers_work as-is. If a
timer interrupt arrives while handling clone and before dup_task_struct
completes then the child task will have:

1. posix_cputimers_work.scheduled = true
2. posix_cputimers_work.work queued.

copy_process clears task_struct.task_works, so (2) will have no effect and
posix_cpu_timers_work will never run (not to mention it doesn't make sense
for two tasks to share a common linked list).

Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is
never cleared. Since scheduled is set, future timer interrupts will skip
scheduling work, with the ultimate result that the task will never receive
timer expirations.

Together, the complete flow is:

1. Task 1 calls clone(), enters kernel.
2. Timer interrupt fires, schedules task work on Task 1.
   2a. task_struct.posix_cputimers_work.scheduled = true
   2b. task_struct.posix_cputimers_work.work added to
       task_struct.task_works.
3. dup_task_struct() copies Task 1 to Task 2.
4. copy_process() clears task_struct.task_works for Task 2.
5. Future timer interrupts on Task 2 see
   task_struct.posix_cputimers_work.scheduled = true and skip scheduling
   work.

Fix this by explicitly clearing contents of task_struct.posix_cputimers_work
in copy_process(). This was never meant to be shared or inherited across
tasks in the first place.

Fixes: 1fb497dd00 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work")
Reported-by: Rhys Hiltner <rhys@justin.tv>
Signed-off-by: Michael Pratt <mpratt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
2021-11-02 12:52:17 +01:00
Frederic Weisbecker
8cd9da85d2 posix-cpu-timers: Prevent spuriously armed 0-value itimer
Resetting/stopping an itimer eventually leads to it being reprogrammed
with an actual "0" value. As a result the itimer expires on the next
tick, triggering an unexpected signal.

To fix this, make sure that
struct signal_struct::it[CPUCLOCK_PROF/VIRT]::expires is set to 0 when
setitimer() passes a 0 it_value, indicating that the timer must stop.

Fixes: 406dd42bd1 ("posix-cpu-timers: Force next expiration recalc after itimer reset")
Reported-by: Victor Stinner <vstinner@redhat.com>
Reported-by: Chris Hixon <linux-kernel-bugs@hixontech.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210913145332.232023-1-frederic@kernel.org
2021-09-23 11:53:51 +02:00
Linus Torvalds
14726903c8 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "173 patches.

  Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
  pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
  bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
  hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
  oom-kill, migration, ksm, percpu, vmstat, and madvise)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
  mm/madvise: add MADV_WILLNEED to process_madvise()
  mm/vmstat: remove unneeded return value
  mm/vmstat: simplify the array size calculation
  mm/vmstat: correct some wrong comments
  mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
  selftests: vm: add COW time test for KSM pages
  selftests: vm: add KSM merging time test
  mm: KSM: fix data type
  selftests: vm: add KSM merging across nodes test
  selftests: vm: add KSM zero page merging test
  selftests: vm: add KSM unmerge test
  selftests: vm: add KSM merge test
  mm/migrate: correct kernel-doc notation
  mm: wire up syscall process_mrelease
  mm: introduce process_mrelease system call
  memblock: make memblock_find_in_range method private
  mm/mempolicy.c: use in_task() in mempolicy_slab_node()
  mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
  mm/mempolicy: advertise new MPOL_PREFERRED_MANY
  mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
  ...
2021-09-03 10:08:28 -07:00
Vasily Averin
c509723ec2 memcg: enable accounting for posix_timers_cache slab
A program may create multiple interval timers using timer_create().  For
each timer the kernel preallocates a "queued real-time signal",
Consequently, the number of timers is limited by the RLIMIT_SIGPENDING
resource limit.  The allocated object is quite small, ~250 bytes, but even
the default signal limits allow to consume up to 100 megabytes per user.

It makes sense to account for them to limit the host's memory consumption
from inside the memcg-limited container.

Link: https://lkml.kernel.org/r/57795560-025c-267c-6b1a-dea852d95530@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Vasily Averin
30acd0bdfb memcg: enable accounting for new namesapces and struct nsproxy
Container admin can create new namespaces and force kernel to allocate up
to several pages of memory for the namespaces and its associated
structures.

Net and uts namespaces have enabled accounting for such allocations.  It
makes sense to account for rest ones to restrict the host's memory
consumption from inside the memcg-limited container.

Link: https://lkml.kernel.org/r/5525bcbf-533e-da27-79b7-158686c64e13@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Paul E. McKenney
d25a025201 clocksource: Make clocksource watchdog test safe for slow-HZ systems
The clocksource watchdog test sets a local JIFFIES_SHIFT macro and assumes
that HZ is >= 100. For smaller HZ values this shift value is too large and
causes undefined behaviour.

Move the HZ-based definitions of JIFFIES_SHIFT from kernel/time/jiffies.c
to kernel/time/tick-internal.h so the clocksource watchdog test can utilize
them, which makes it work correctly with all HZ values.

[ tglx: Resolved conflicts and massaged changelog ]

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20210812000133.GA402890@paulmck-ThinkPad-P17-Gen-1/
2021-08-28 17:01:32 +02:00
Thomas Gleixner
f80e214895 hrtimer: Unbreak hrtimer_force_reprogram()
Since the recent consoliation of reprogramming functions,
hrtimer_force_reprogram() is affected by a check whether the new expiry
time is past the current expiry time.

This breaks the NOHZ logic as that relies on the fact that the tick hrtimer
is moved into the future. That means cpu_base->expires_next becomes stale
and subsequent reprogramming attempts fail as well until the situation is
cleaned up by an hrtimer interrupts.

For some yet unknown reason this leads to a complete stall, so for now
partially revert the offending commit to a known working state. The root
cause for the stall is still investigated and will be fixed in a subsequent
commit.

Fixes: b14bca97c9 ("hrtimer: Consolidate reprogramming code")
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lore.kernel.org/r/8735recskh.ffs@tglx
2021-08-12 22:34:40 +02:00
Thomas Gleixner
9482fd71db hrtimer: Use raw_cpu_ptr() in clock_was_set()
clock_was_set() can be invoked from preemptible context. Use raw_cpu_ptr()
to check whether high resolution mode is active or not. It does not matter
whether the task migrates after acquiring the pointer.

Fixes: e71a4153b7 ("hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case")
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/875ywacsmb.ffs@tglx
2021-08-12 22:34:40 +02:00
Thomas Gleixner
1e7f7fbcd4 hrtimer: Avoid more SMP function calls in clock_was_set()
By unconditionally updating the offsets there are more indicators
whether the SMP function calls on clock_was_set() can be avoided:

  - When the offset update already happened on the remote CPU then the
    remote update attempt will yield the same seqeuence number and no
    IPI is required.

  - When the remote CPU is currently handling hrtimer_interrupt(). In
    that case the remote CPU will reevaluate the timer bases before
    reprogramming anyway, so nothing to do.

  - After updating it can be checked whether the first expiring timer in
    the affected clock bases moves before the first expiring (softirq)
    timer of the CPU. If that's not the case then sending the IPI is not
    required.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.887322464@linutronix.de
2021-08-10 17:57:23 +02:00
Marcelo Tosatti
81d741d346 hrtimer: Avoid unnecessary SMP function calls in clock_was_set()
Setting of clocks triggers an unconditional SMP function call on all online
CPUs to reprogram the clock event device.

However, only some clocks have their offsets updated and therefore
potentially require a reprogram. That's CLOCK_REALTIME and CLOCK_TAI and in
the case of resume (delayed sleep time injection) also CLOCK_BOOTTIME.

Instead of sending an IPI unconditionally, check each per CPU hrtimer base
whether it has active timers in the affected clock bases which are
indicated by the caller in the @bases argument of clock_was_set().

If that's not the case, skip the IPI and update the offsets remotely which
ensures that any subsequently armed timers on the affected clocks are
evaluated with the correct offsets.

[ tglx: Adopted to the new bases argument, removed the softirq_active
  	check, added comment, fixed up stale comment ]

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.787536542@linutronix.de
2021-08-10 17:57:23 +02:00
Thomas Gleixner
17a1b8826b hrtimer: Add bases argument to clock_was_set()
clock_was_set() unconditionaly invokes retrigger_next_event() on all online
CPUs. This was necessary because that mechanism was also used for resume
from suspend to idle which is not longer the case.

The bases arguments allows the callers of clock_was_set() to hand in a mask
which tells clock_was_set() which of the hrtimer clock bases are affected
by the clock setting. This mask will be used in the next step to check
whether a CPU base has timers queued on a clock base affected by the event
and avoid the SMP function call if there are none.

Add a @bases argument, provide defines for the active bases masking and
fixup all callsites.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.691083465@linutronix.de
2021-08-10 17:57:23 +02:00
Thomas Gleixner
1b267793f4 time/timekeeping: Avoid invoking clock_was_set() twice
do_adjtimex() might end up scheduling a delayed clock_was_set() via
timekeeping_advance() and then invoke clock_was_set() directly which is
pointless.

Make timekeeping_advance() return whether an invocation of clock_was_set()
is required and handle it at the call sites which allows do_adjtimex() to
issue a single direct call if required.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.580966888@linutronix.de
2021-08-10 17:57:23 +02:00
Thomas Gleixner
a761a67f59 timekeeping: Distangle resume and clock-was-set events
Resuming timekeeping is a clock-was-set event and uses the clock-was-set
notification mechanism. This is in the way of making the clock-was-set
update for hrtimers selective so unnecessary IPIs are avoided when a CPU
base does not have timers queued which are affected by the clock setting.

Distangle it by invoking hrtimer_resume() on each unfreezing CPU and invoke
the new timerfd_resume() function from timekeeping_resume() which is the
only place where this is needed.

Rename hrtimer_resume() to hrtimer_resume_local() to reflect the change.

With this the clock_was_set*() functions are not longer required to IPI all
CPUs unconditionally and can get some smarts to avoid them.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.488853478@linutronix.de
2021-08-10 17:57:23 +02:00
Thomas Gleixner
e71a4153b7 hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case
When CONFIG_HIGH_RES_TIMERS is disabled, but NOHZ is enabled then
clock_was_set() is not doing anything. With HIGHRES=n the kernel relies on
the periodic tick to update the clock offsets, but when NOHZ is enabled and
active then CPUs which are in a deep idle sleep do not have a periodic tick
which means the expiry of timers affected by clock_was_set() can be
arbitrarily delayed up to the point where the CPUs are brought out of idle
again.

Make the clock_was_set() logic unconditionaly available so that idle CPUs
are kicked out of idle to handle the update.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.288697903@linutronix.de
2021-08-10 17:57:22 +02:00
Thomas Gleixner
8c3b5e6ec0 hrtimer: Ensure timerfd notification for HIGHRES=n
If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.

Make clock_was_set_delayed() unconditially available to fix that.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
2021-08-10 17:57:22 +02:00
Peter Zijlstra
b14bca97c9 hrtimer: Consolidate reprogramming code
This code is mostly duplicated. The redudant store in the force reprogram
case does no harm and the in hrtimer interrupt condition cannot be true for
the force reprogram invocations.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.054424875@linutronix.de
2021-08-10 17:57:22 +02:00
Thomas Gleixner
627ef5ae2d hrtimer: Avoid double reprogramming in __hrtimer_start_range_ns()
If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then
the timer has to be canceled first and then added back. If the timer is the
first expiring timer then on removal the clockevent device is reprogrammed
to the next expiring timer to avoid that the pending expiry fires needlessly.

If the new expiry time ends up to be the first expiry again then the clock
event device has to reprogrammed again.

Avoid this by checking whether the timer is the first to expire and in that
case, keep the timer on the current CPU and delay the reprogramming up to
the point where the timer has been enqueued again.

Reported-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
2021-08-10 17:57:22 +02:00
Frederic Weisbecker
ee375328f5 posix-cpu-timers: Recalc next expiration when timer_settime() ends up not queueing
There are several scenarios that can result in posix_cpu_timer_set()
not queueing the timer but still leaving the threadgroup cputime counter
running or keeping the tick dependency around for a random amount of time.

1) If timer_settime() is called with a 0 expiration on a timer that is
   already disabled, the process wide cputime counter will be started
   and won't ever get a chance to be stopped by stop_process_timer()
   since no timer is actually armed to be processed.

   The following snippet is enough to trigger the issue.

	void trigger_process_counter(void)
	{
		timer_t id;
		struct itimerspec val = { };

		timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
		timer_settime(id, TIMER_ABSTIME, &val, NULL);
		timer_delete(id);
	}

2) If timer_settime() is called with a 0 expiration on a timer that is
   already armed, the timer is dequeued but not really disarmed. So the
   process wide cputime counter and the tick dependency may still remain
   a while around.

   The following code snippet keeps this overhead around for one week after
   the timer deletion:

	void trigger_process_counter(void)
	{
		timer_t id;
		struct itimerspec val = { };

		val.it_value.tv_sec = 604800;
		timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
		timer_settime(id, 0, &val, NULL);
		timer_delete(id);
	}

3) If the timer was initially deactivated, this call to timer_settime()
   with an early expiration may have started the process wide cputime
   counter even though the timer hasn't been queued and armed because it
   has fired early and inline within posix_cpu_timer_set() itself. As a
   result the process wide cputime counter may never stop until a new
   timer is ever armed in the future.

   The following code snippet can reproduce this:

	void trigger_process_counter(void)
	{
		timer_t id;
		struct itimerspec val = { };

		signal(SIGALRM, SIG_IGN);
		timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
		val.it_value.tv_nsec = 1;
		timer_settime(id, TIMER_ABSTIME, &val, NULL);
	}

4) If the timer was initially armed with a former expiration value
   before this call to timer_settime() and the current call sets an
   early deadline that has already expired, the timer fires inline
   within posix_cpu_timer_set(). In this case it must have been dequeued
   before firing inline with its new expiration value, yet it hasn't
   been disarmed in this case. So the process wide cputime counter and
   the tick dependency may still be around for a while even after the
   timer fired.

   The following code snippet can reproduce this:

	void trigger_process_counter(void)
	{
		timer_t id;
		struct itimerspec val = { };

		signal(SIGALRM, SIG_IGN);
		timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
		val.it_value.tv_sec = 100;
		timer_settime(id, TIMER_ABSTIME, &val, NULL);
		val.it_value.tv_sec = 0;
		val.it_value.tv_nsec = 1;
		timer_settime(id, TIMER_ABSTIME, &val, NULL);
	}

Fix all these issues with triggering the related base next expiration
recalculation on the next tick. This also implies to re-evaluate the need
to keep around the process wide cputime counter and the tick dependency, in
a similar fashion to disarm_timer().

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-7-frederic@kernel.org
2021-08-10 17:09:59 +02:00
Frederic Weisbecker
5c8f23e6b7 posix-cpu-timers: Consolidate timer base accessor
Remove the ad-hoc timer base accessors and provide a consolidated one.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-6-frederic@kernel.org
2021-08-10 17:09:59 +02:00
Frederic Weisbecker
d9c1b2a108 posix-cpu-timers: Remove confusing return value override
The end of the function cannot be reached with an error in variable
ret. Unconfuse reviewers about that.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-5-frederic@kernel.org
2021-08-10 17:09:59 +02:00
Frederic Weisbecker
406dd42bd1 posix-cpu-timers: Force next expiration recalc after itimer reset
When an itimer deactivates a previously armed expiration, it simply doesn't
do anything. As a result the process wide cputime counter keeps running and
the tick dependency stays set until it reaches the old ghost expiration
value.

This can be reproduced with the following snippet:

	void trigger_process_counter(void)
	{
		struct itimerval n = {};

		n.it_value.tv_sec = 100;
		setitimer(ITIMER_VIRTUAL, &n, NULL);
		n.it_value.tv_sec = 0;
		setitimer(ITIMER_VIRTUAL, &n, NULL);
	}

Fix this with resetting the relevant base expiration. This is similar to
disarming a timer.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-4-frederic@kernel.org
2021-08-10 17:09:59 +02:00
Frederic Weisbecker
175cc3ab28 posix-cpu-timers: Force next_expiration recalc after timer deletion
A timer deletion only dequeues the timer but it doesn't shutdown
the related costly process wide cputimer counter and the tick dependency.

The following code snippet keeps this overhead around for one week after
the timer deletion:

	void trigger_process_counter(void)
	{
		timer_t id;
		struct itimerspec val = { };

		val.it_value.tv_sec = 604800;
		timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
		timer_settime(id, 0, &val, NULL);
		timer_delete(id);
	}

Make sure the next target's tick recalculates the nearest expiration and
clears the process wide counter and tick dependency if necessary.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-3-frederic@kernel.org
2021-08-10 17:09:59 +02:00
Frederic Weisbecker
a5dec9f82a posix-cpu-timers: Assert task sighand is locked while starting cputime counter
Starting the process wide cputime counter needs to be done in the same
sighand locking sequence than actually arming the related timer otherwise
this races against concurrent timers setting/expiring in the same
threadgroup.

Detecting that the cputime counter is started without holding the sighand
lock is a first step toward debugging such situations.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-2-frederic@kernel.org
2021-08-10 17:09:58 +02:00