Add a flag ([EXT4|FS]_DAX_FL) to preserve FS_XFLAG_DAX in the ext4
inode.
Set the flag to be user visible and changeable. Set the flag to be
inherited. Allow applications to change the flag at any time except if
it conflicts with the set of mutually exclusive flags (Currently VERITY,
ENCRYPT, JOURNAL_DATA).
Furthermore, restrict setting any of the exclusive flags if DAX is set.
While conceptually possible, we do not allow setting EXT4_DAX_FL while
at the same time clearing exclusion flags (or vice versa) for 2 reasons:
1) The DAX flag does not take effect immediately which
introduces quite a bit of complexity
2) There is no clear use case for being this flexible
Finally, on regular files, flag the inode to not be cached to facilitate
changing S_DAX on the next creation of the inode.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20200528150003.828793-9-ira.weiny@intel.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Pull f2fs updates from Jaegeuk Kim:
"In this round, we introduced casefolding support in f2fs, and fixed
various bugs in individual features such as IO alignment,
checkpoint=disable, quota, and swapfile.
Enhancement:
- support casefolding w/ enhancement in ext4
- support fiemap for directory
- support FS_IO_GET|SET_FSLABEL
Bug fix:
- fix IO stuck during checkpoint=disable
- avoid infinite GC loop
- fix panic/overflow related to IO alignment feature
- fix livelock in swap file
- fix discard command leak
- disallow dio for atomic_write"
* tag 'f2fs-for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (51 commits)
f2fs: add a condition to detect overflow in f2fs_ioc_gc_range()
f2fs: fix to add missing F2FS_IO_ALIGNED() condition
f2fs: fix to fallback to buffered IO in IO aligned mode
f2fs: fix to handle error path correctly in f2fs_map_blocks
f2fs: fix extent corrupotion during directIO in LFS mode
f2fs: check all the data segments against all node ones
f2fs: Add a small clarification to CONFIG_FS_F2FS_FS_SECURITY
f2fs: fix inode rwsem regression
f2fs: fix to avoid accessing uninitialized field of inode page in is_alive()
f2fs: avoid infinite GC loop due to stale atomic files
f2fs: Fix indefinite loop in f2fs_gc()
f2fs: convert inline_data in prior to i_size_write
f2fs: fix error path of f2fs_convert_inline_page()
f2fs: add missing documents of reserve_root/resuid/resgid
f2fs: fix flushing node pages when checkpoint is disabled
f2fs: enhance f2fs_is_checkpoint_ready()'s readability
f2fs: clean up __bio_alloc()'s parameter
f2fs: fix wrong error injection path in inc_valid_block_count()
f2fs: fix to writeout dirty inode during node flush
f2fs: optimize case-insensitive lookups
...
Pull fs-verity support from Eric Biggers:
"fs-verity is a filesystem feature that provides Merkle tree based
hashing (similar to dm-verity) for individual readonly files, mainly
for the purpose of efficient authenticity verification.
This pull request includes:
(a) The fs/verity/ support layer and documentation.
(b) fs-verity support for ext4 and f2fs.
Compared to the original fs-verity patchset from last year, the UAPI
to enable fs-verity on a file has been greatly simplified. Lots of
other things were cleaned up too.
fs-verity is planned to be used by two different projects on Android;
most of the userspace code is in place already. Another userspace tool
("fsverity-utils"), and xfstests, are also available. e2fsprogs and
f2fs-tools already have fs-verity support. Other people have shown
interest in using fs-verity too.
I've tested this on ext4 and f2fs with xfstests, both the existing
tests and the new fs-verity tests. This has also been in linux-next
since July 30 with no reported issues except a couple minor ones I
found myself and folded in fixes for.
Ted and I will be co-maintaining fs-verity"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
f2fs: add fs-verity support
ext4: update on-disk format documentation for fs-verity
ext4: add fs-verity read support
ext4: add basic fs-verity support
fs-verity: support builtin file signatures
fs-verity: add SHA-512 support
fs-verity: implement FS_IOC_MEASURE_VERITY ioctl
fs-verity: implement FS_IOC_ENABLE_VERITY ioctl
fs-verity: add data verification hooks for ->readpages()
fs-verity: add the hook for file ->setattr()
fs-verity: add the hook for file ->open()
fs-verity: add inode and superblock fields
fs-verity: add Kconfig and the helper functions for hashing
fs: uapi: define verity bit for FS_IOC_GETFLAGS
fs-verity: add UAPI header
fs-verity: add MAINTAINERS file entry
fs-verity: add a documentation file
In preparation for including the casefold feature within f2fs, elevate
the EXT4_CASEFOLD_FL flag to FS_CASEFOLD_FL.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
More fscrypt definitions are being added, and we shouldn't use a
disproportionate amount of space in <linux/fs.h> for fscrypt stuff.
So move the fscrypt definitions to a new header <linux/fscrypt.h>.
For source compatibility with existing userspace programs, <linux/fs.h>
still includes the new header.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add FS_VERITY_FL to the flags for FS_IOC_GETFLAGS, so that applications
can easily determine whether a file is a verity file at the same time as
they're checking other file flags. This flag will be gettable only;
FS_IOC_SETFLAGS won't allow setting it, since an ioctl must be used
instead to provide more parameters.
This flag matches the on-disk bit that was already allocated for ext4.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
23d0127096 ("fs/sync.c: make sync_file_range(2) use WB_SYNC_NONE
writeback") claims that sync_file_range(2) syscall was "created for
userspace to be able to issue background writeout and so waiting for
in-flight IO is undesirable there" and changes the writeback (back) to
WB_SYNC_NONE.
This claim is only partially true. It is true for users that use the flag
SYNC_FILE_RANGE_WRITE by itself, as does PostgreSQL, the user that was the
reason for changing to WB_SYNC_NONE writeback.
However, that claim is not true for users that use that flag combination
SYNC_FILE_RANGE_{WAIT_BEFORE|WRITE|_WAIT_AFTER}. Those users explicitly
requested to wait for in-flight IO as well as to writeback of dirty pages.
Re-brand that flag combination as SYNC_FILE_RANGE_WRITE_AND_WAIT and use
WB_SYNC_ALL writeback to perform the full range sync request.
Link: http://lkml.kernel.org/r/20190409114922.30095-1-amir73il@gmail.com
Link: http://lkml.kernel.org/r/20190419072938.31320-1-amir73il@gmail.com
Fixes: 23d0127096 ("fs/sync.c: make sync_file_range(2) use WB_SYNC_NONE")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Jan Kara <jack@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull fscrypt updates from Ted Ts'o:
"Add Adiantum support for fscrypt"
* tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: add Adiantum support
Add support for the Adiantum encryption mode to fscrypt. Adiantum is a
tweakable, length-preserving encryption mode with security provably
reducible to that of XChaCha12 and AES-256, subject to a security bound.
It's also a true wide-block mode, unlike XTS. See the paper
"Adiantum: length-preserving encryption for entry-level processors"
(https://eprint.iacr.org/2018/720.pdf) for more details. Also see
commit 059c2a4d8e ("crypto: adiantum - add Adiantum support").
On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and
the NH hash function. These algorithms are fast even on processors
without dedicated crypto instructions. Adiantum makes it feasible to
enable storage encryption on low-end mobile devices that lack AES
instructions; currently such devices are unencrypted. On ARM Cortex-A7,
on 4096-byte messages Adiantum encryption is about 4 times faster than
AES-256-XTS encryption; decryption is about 5 times faster.
In fscrypt, Adiantum is suitable for encrypting both file contents and
names. With filenames, it fixes a known weakness: when two filenames in
a directory share a common prefix of >= 16 bytes, with CTS-CBC their
encrypted filenames share a common prefix too, leaking information.
Adiantum does not have this problem.
Since Adiantum also accepts long tweaks (IVs), it's also safe to use the
master key directly for Adiantum encryption rather than deriving
per-file keys, provided that the per-file nonce is included in the IVs
and the master key isn't used for any other encryption mode. This
configuration saves memory and improves performance. A new fscrypt
policy flag is added to allow users to opt-in to this configuration.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Only the mount namespace code that implements mount(2) should be using the
MS_* flags. Suppress them inside the kernel unless uapi/linux/mount.h is
included.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: David Howells <dhowells@redhat.com>
Pull fscrypt updates from Ted Ts'o:
"Add bunch of cleanups, and add support for the Speck128/256
algorithms.
Yes, Speck is contrversial, but the intention is to use them only for
the lowest end Android devices, where the alternative *really* is no
encryption at all for data stored at rest"
* tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: log the crypto algorithm implementations
fscrypt: add Speck128/256 support
fscrypt: only derive the needed portion of the key
fscrypt: separate key lookup from key derivation
fscrypt: use a common logging function
fscrypt: remove internal key size constants
fscrypt: remove unnecessary check for non-logon key type
fscrypt: make fscrypt_operations.max_namelen an integer
fscrypt: drop empty name check from fname_decrypt()
fscrypt: drop max_namelen check from fname_decrypt()
fscrypt: don't special-case EOPNOTSUPP from fscrypt_get_encryption_info()
fscrypt: don't clear flags on crypto transform
fscrypt: remove stale comment from fscrypt_d_revalidate()
fscrypt: remove error messages for skcipher_request_alloc() failure
fscrypt: remove unnecessary NULL check when allocating skcipher
fscrypt: clean up after fscrypt_prepare_lookup() conversions
fs, fscrypt: only define ->s_cop when FS_ENCRYPTION is enabled
fscrypt: use unbound workqueue for decryption
fscrypt currently only supports AES encryption. However, many low-end
mobile devices have older CPUs that don't have AES instructions, e.g.
the ARMv8 Cryptography Extensions. Currently, user data on such devices
is not encrypted at rest because AES is too slow, even when the NEON
bit-sliced implementation of AES is used. Unfortunately, it is
infeasible to encrypt these devices at all when AES is the only option.
Therefore, this patch updates fscrypt to support the Speck block cipher,
which was recently added to the crypto API. The C implementation of
Speck is not especially fast, but Speck can be implemented very
efficiently with general-purpose vector instructions, e.g. ARM NEON.
For example, on an ARMv7 processor, we measured the NEON-accelerated
Speck128/256-XTS at 69 MB/s for both encryption and decryption, while
AES-256-XTS with the NEON bit-sliced implementation was only 22 MB/s
encryption and 19 MB/s decryption.
There are multiple variants of Speck. This patch only adds support for
Speck128/256, which is the variant with a 128-bit block size and 256-bit
key size -- the same as AES-256. This is believed to be the most secure
variant of Speck, and it's only about 6% slower than Speck128/128.
Speck64/128 would be at least 20% faster because it has 20% rounds, and
it can be even faster on CPUs that can't efficiently do the 64-bit
operations needed for Speck128. However, Speck64's 64-bit block size is
not preferred security-wise. ARM NEON also supports the needed 64-bit
operations even on 32-bit CPUs, resulting in Speck128 being fast enough
for our targeted use cases so far.
The chosen modes of operation are XTS for contents and CTS-CBC for
filenames. These are the same modes of operation that fscrypt defaults
to for AES. Note that as with the other fscrypt modes, Speck will not
be used unless userspace chooses to use it. Nor are any of the existing
modes (which are all AES-based) being removed, of course.
We intentionally don't make CONFIG_FS_ENCRYPTION select
CONFIG_CRYPTO_SPECK, so people will have to enable Speck support
themselves if they need it. This is because we shouldn't bloat the
FS_ENCRYPTION dependencies with every new cipher, especially ones that
aren't recommended for most users. Moreover, CRYPTO_SPECK is just the
generic implementation, which won't be fast enough for many users; in
practice, they'll need to enable CRYPTO_SPECK_NEON to get acceptable
performance.
More details about our choice of Speck can be found in our patches that
added Speck to the crypto API, and the follow-on discussion threads.
We're planning a publication that explains the choice in more detail.
But briefly, we can't use ChaCha20 as we previously proposed, since it
would be insecure to use a stream cipher in this context, with potential
IV reuse during writes on f2fs and/or on wear-leveling flash storage.
We also evaluated many other lightweight and/or ARX-based block ciphers
such as Chaskey-LTS, RC5, LEA, CHAM, Threefish, RC6, NOEKEON, SPARX, and
XTEA. However, all had disadvantages vs. Speck, such as insufficient
performance with NEON, much less published cryptanalysis, or an
insufficient security level. Various design choices in Speck make it
perform better with NEON than competing ciphers while still having a
security margin similar to AES, and in the case of Speck128 also the
same available security levels. Unfortunately, Speck does have some
political baggage attached -- it's an NSA designed cipher, and was
rejected from an ISO standard (though for context, as far as I know none
of the above-mentioned alternatives are ISO standards either).
Nevertheless, we believe it is a good solution to the problem from a
technical perspective.
Certain algorithms constructed from ChaCha or the ChaCha permutation,
such as MEM (Masked Even-Mansour) or HPolyC, may also meet our
performance requirements. However, these are new constructions that
need more time to receive the cryptographic review and acceptance needed
to be confident in their security. HPolyC hasn't been published yet,
and we are concerned that MEM makes stronger assumptions about the
underlying permutation than the ChaCha stream cipher does. In contrast,
the XTS mode of operation is relatively well accepted, and Speck has
over 70 cryptanalysis papers. Of course, these ChaCha-based algorithms
can still be added later if they become ready.
The best known attack on Speck128/256 is a differential cryptanalysis
attack on 25 of 34 rounds with 2^253 time complexity and 2^125 chosen
plaintexts, i.e. only marginally faster than brute force. There is no
known attack on the full 34 rounds.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This retains 256 chars as the maximum size through the interface, which
is the btrfs limit and AFAIK exceeds any other filesystem's maximum
label size.
This just copies the ioctl for now and leaves it in place for btrfs
for the time being. A later patch will allow btrfs to use the new
common ioctl definition, but it may be sent after this is merged.
(Note, Reviewed-by's were originally given for the combined vfs+btrfs
patch, some license taken here.)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This is the per-I/O equivalent of O_APPEND to support atomic append
operations on any open file.
If a file is opened with O_APPEND, pwrite() ignores the offset and
always appends data to the end of the file. RWF_APPEND enables atomic
append and pwrite() with offset on a single file descriptor.
Signed-off-by: Jürg Billeter <j@bitron.ch>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Many user space API headers are missing licensing information, which
makes it hard for compliance tools to determine the correct license.
By default are files without license information under the default
license of the kernel, which is GPLV2. Marking them GPLV2 would exclude
them from being included in non GPLV2 code, which is obviously not
intended. The user space API headers fall under the syscall exception
which is in the kernels COPYING file:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
otherwise syscall usage would not be possible.
Update the files which contain no license information with an SPDX
license identifier. The chosen identifier is 'GPL-2.0 WITH
Linux-syscall-note' which is the officially assigned identifier for the
Linux syscall exception. SPDX license identifiers are a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull fscrypt updates from Ted Ts'o:
"Add support for 128-bit AES and some cleanups to fscrypt"
* tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: make ->dummy_context() return bool
fscrypt: add support for AES-128-CBC
fscrypt: inline fscrypt_free_filename()
fscrypt provides facilities to use different encryption algorithms which
are selectable by userspace when setting the encryption policy. Currently,
only AES-256-XTS for file contents and AES-256-CBC-CTS for file names are
implemented. This is a clear case of kernel offers the mechanism and
userspace selects a policy. Similar to what dm-crypt and ecryptfs have.
This patch adds support for using AES-128-CBC for file contents and
AES-128-CBC-CTS for file name encryption. To mitigate watermarking
attacks, IVs are generated using the ESSIV algorithm. While AES-CBC is
actually slightly less secure than AES-XTS from a security point of view,
there is more widespread hardware support. Using AES-CBC gives us the
acceptable performance while still providing a moderate level of security
for persistent storage.
Especially low-powered embedded devices with crypto accelerators such as
CAAM or CESA often only support AES-CBC. Since using AES-CBC over AES-XTS
is basically thought of a last resort, we use AES-128-CBC over AES-256-CBC
since it has less encryption rounds and yields noticeable better
performance starting from a file size of just a few kB.
Signed-off-by: Daniel Walter <dwalter@sigma-star.at>
[david@sigma-star.at: addressed review comments]
Signed-off-by: David Gstir <david@sigma-star.at>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
RWF_NOWAIT informs kernel to bail out if an AIO request will block
for reasons such as file allocations, or a writeback triggered,
or would block while allocating requests while performing
direct I/O.
RWF_NOWAIT is translated to IOCB_NOWAIT for iocb->ki_flags.
FMODE_AIO_NOWAIT is a flag which identifies the file opened is capable
of returning -EAGAIN if the AIO call will block. This must be set by
supporting filesystems in the ->open() call.
Filesystems xfs, btrfs and ext4 would be supported in the following patches.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Also added RWF_SUPPORTED to encompass all flags.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit removes __packed from fscrypt_policy as it does not contain
any implicit padding and does not refer to an on-disk structure. Even
though this is a change to a UAPI file, no users will be broken as the
structure doesn't change.
Signed-off-by: Joe Richey <joerichey@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This commit exposes the necessary constants and structures for a
userspace program to pass filesystem encryption keys into the keyring.
The fscrypt_key structure was already part of the kernel ABI, this
change just makes it so programs no longer have to redeclare these
structures (like e4crypt in e2fsprogs currently does).
Note that we do not expose the other FS_*_KEY_SIZE constants as they are
not necessary. Only XTS is supported for contents_encryption_mode, so
currently FS_MAX_KEY_SIZE bytes of key material must always be passed to
the kernel.
This commit also removes __packed from fscrypt_key as it does not
contain any implicit padding and does not refer to an on-disk structure.
Signed-off-by: Joe Richey <joerichey@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>