Commit Graph

1953 Commits

Author SHA1 Message Date
Linus Torvalds
a602285ac1 Merge branch 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull per signal_struct coredumps from Eric Biederman:
 "Current coredumps are mixed up with the exit code, the signal handling
  code, and the ptrace code making coredumps much more complicated than
  necessary and difficult to follow.

  This series of changes starts with ptrace_stop and cleans it up,
  making it easier to follow what is happening in ptrace_stop. Then
  cleans up the exec interactions with coredumps. Then cleans up the
  coredump interactions with exit. Finally the coredump interactions
  with the signal handling code is cleaned up.

  The first and last changes are bug fixes for minor bugs.

  I believe the fact that vfork followed by execve can kill the process
  the called vfork if exec fails is sufficient justification to change
  the userspace visible behavior.

  In previous discussions some of these changes were organized
  differently and individually appeared to make the code base worse. As
  currently written I believe they all stand on their own as cleanups
  and bug fixes.

  Which means that even if the worst should happen and the last change
  needs to be reverted for some unimaginable reason, the code base will
  still be improved.

  If the worst does not happen there are a more cleanups that can be
  made. Signals that generate coredumps can easily become eligible for
  short circuit delivery in complete_signal. The entire rendezvous for
  generating a coredump can move into get_signal. The function
  force_sig_info_to_task be written in a way that does not modify the
  signal handling state of the target task (because coredumps are
  eligible for short circuit delivery). Many of these future cleanups
  can be done another way but nothing so cleanly as if coredumps become
  per signal_struct"

* 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  coredump: Limit coredumps to a single thread group
  coredump:  Don't perform any cleanups before dumping core
  exit: Factor coredump_exit_mm out of exit_mm
  exec: Check for a pending fatal signal instead of core_state
  ptrace: Remove the unnecessary arguments from arch_ptrace_stop
  signal: Remove the bogus sigkill_pending in ptrace_stop
2021-11-03 12:15:29 -07:00
Linus Torvalds
01463374c5 Merge tag 'cpu-to-thread_info-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull thread_info update to move 'cpu' back from task_struct from Kees Cook:
 "Cross-architecture update to move task_struct::cpu back into
  thread_info on arm64, x86, s390, powerpc, and riscv. All Acked by arch
  maintainers.

  Quoting Ard Biesheuvel:

     'Move task_struct::cpu back into thread_info

      Keeping CPU in task_struct is problematic for architectures that
      define raw_smp_processor_id() in terms of this field, as it
      requires linux/sched.h to be included, which causes a lot of pain
      in terms of circular dependencies (aka 'header soup')

      This series moves it back into thread_info (where it came from)
      for all architectures that enable THREAD_INFO_IN_TASK, addressing
      the header soup issue as well as some pointless differences in the
      implementations of task_cpu() and set_task_cpu()'"

* tag 'cpu-to-thread_info-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  riscv: rely on core code to keep thread_info::cpu updated
  powerpc: smp: remove hack to obtain offset of task_struct::cpu
  sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y
  powerpc: add CPU field to struct thread_info
  s390: add CPU field to struct thread_info
  x86: add CPU field to struct thread_info
  arm64: add CPU field to struct thread_info
2021-11-01 17:00:05 -07:00
Linus Torvalds
9a7e0a90a4 Merge tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:

 - Revert the printk format based wchan() symbol resolution as it can
   leak the raw value in case that the symbol is not resolvable.

 - Make wchan() more robust and work with all kind of unwinders by
   enforcing that the task stays blocked while unwinding is in progress.

 - Prevent sched_fork() from accessing an invalid sched_task_group

 - Improve asymmetric packing logic

 - Extend scheduler statistics to RT and DL scheduling classes and add
   statistics for bandwith burst to the SCHED_FAIR class.

 - Properly account SCHED_IDLE entities

 - Prevent a potential deadlock when initial priority is assigned to a
   newly created kthread. A recent change to plug a race between cpuset
   and __sched_setscheduler() introduced a new lock dependency which is
   now triggered. Break the lock dependency chain by moving the priority
   assignment to the thread function.

 - Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.

 - Improve idle balancing in general and especially for NOHZ enabled
   systems.

 - Provide proper interfaces for live patching so it does not have to
   fiddle with scheduler internals.

 - Add cluster aware scheduling support.

 - A small set of tweaks for RT (irqwork, wait_task_inactive(), various
   scheduler options and delaying mmdrop)

 - The usual small tweaks and improvements all over the place

* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
  sched/fair: Cleanup newidle_balance
  sched/fair: Remove sysctl_sched_migration_cost condition
  sched/fair: Wait before decaying max_newidle_lb_cost
  sched/fair: Skip update_blocked_averages if we are defering load balance
  sched/fair: Account update_blocked_averages in newidle_balance cost
  x86: Fix __get_wchan() for !STACKTRACE
  sched,x86: Fix L2 cache mask
  sched/core: Remove rq_relock()
  sched: Improve wake_up_all_idle_cpus() take #2
  irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
  irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
  irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
  sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
  sched: Add cluster scheduler level for x86
  sched: Add cluster scheduler level in core and related Kconfig for ARM64
  topology: Represent clusters of CPUs within a die
  sched: Disable -Wunused-but-set-variable
  sched: Add wrapper for get_wchan() to keep task blocked
  x86: Fix get_wchan() to support the ORC unwinder
  proc: Use task_is_running() for wchan in /proc/$pid/stat
  ...
2021-11-01 13:48:52 -07:00
Linus Torvalds
595b28fb0c Merge tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:

 - Move futex code into kernel/futex/ and split up the kitchen sink into
   seperate files to make integration of sys_futex_waitv() simpler.

 - Add a new sys_futex_waitv() syscall which allows to wait on multiple
   futexes.

   The main use case is emulating Windows' WaitForMultipleObjects which
   allows Wine to improve the performance of Windows Games. Also native
   Linux games can benefit from this interface as this is a common wait
   pattern for this kind of applications.

 - Add context to ww_mutex_trylock() to provide a path for i915 to
   rework their eviction code step by step without making lockdep upset
   until the final steps of rework are completed. It's also useful for
   regulator and TTM to avoid dropping locks in the non contended path.

 - Lockdep and might_sleep() cleanups and improvements

 - A few improvements for the RT substitutions.

 - The usual small improvements and cleanups.

* tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
  locking: Remove spin_lock_flags() etc
  locking/rwsem: Fix comments about reader optimistic lock stealing conditions
  locking: Remove rcu_read_{,un}lock() for preempt_{dis,en}able()
  locking/rwsem: Disable preemption for spinning region
  docs: futex: Fix kernel-doc references
  futex: Fix PREEMPT_RT build
  futex2: Documentation: Document sys_futex_waitv() uAPI
  selftests: futex: Test sys_futex_waitv() wouldblock
  selftests: futex: Test sys_futex_waitv() timeout
  selftests: futex: Add sys_futex_waitv() test
  futex,arm: Wire up sys_futex_waitv()
  futex,x86: Wire up sys_futex_waitv()
  futex: Implement sys_futex_waitv()
  futex: Simplify double_lock_hb()
  futex: Split out wait/wake
  futex: Split out requeue
  futex: Rename mark_wake_futex()
  futex: Rename: match_futex()
  futex: Rename: hb_waiter_{inc,dec,pending}()
  futex: Split out PI futex
  ...
2021-11-01 13:15:36 -07:00
Jens Axboe
599593a82f sched: make task_struct->plug always defined
If CONFIG_BLOCK isn't set, then it's an empty struct anyway. Just make
it generally available, so we don't break the compile:

kernel/sched/core.c: In function ‘sched_submit_work’:
kernel/sched/core.c:6346:35: error: ‘struct task_struct’ has no member named ‘plug’
 6346 |                 blk_flush_plug(tsk->plug, true);
      |                                   ^~
kernel/sched/core.c: In function ‘io_schedule_prepare’:
kernel/sched/core.c:8357:20: error: ‘struct task_struct’ has no member named ‘plug’
 8357 |         if (current->plug)
      |                    ^~
kernel/sched/core.c:8358:39: error: ‘struct task_struct’ has no member named ‘plug’
 8358 |                 blk_flush_plug(current->plug, true);
      |                                       ^~

Reported-by: Nathan Chancellor <nathan@kernel.org>
Fixes: 008f75a20e ("block: cleanup the flush plug helpers")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-10-22 19:35:45 -06:00
Kees Cook
42a20f86dc sched: Add wrapper for get_wchan() to keep task blocked
Having a stable wchan means the process must be blocked and for it to
stay that way while performing stack unwinding.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm]
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Link: https://lkml.kernel.org/r/20211008111626.332092234@infradead.org
2021-10-15 11:25:14 +02:00
Kees Cook
804bccba71 sched: Fill unconditional hole induced by sched_entity
With struct sched_entity before the other sched entities, its alignment
won't induce a struct hole. This saves 64 bytes in defconfig task_struct:

Before:
	...
        unsigned int               rt_priority;          /*   120     4 */

        /* XXX 4 bytes hole, try to pack */

        /* --- cacheline 2 boundary (128 bytes) --- */
        const struct sched_class  * sched_class;         /*   128     8 */

        /* XXX 56 bytes hole, try to pack */

        /* --- cacheline 3 boundary (192 bytes) --- */
        struct sched_entity        se __attribute__((__aligned__(64))); /*   192   448 */
        /* --- cacheline 10 boundary (640 bytes) --- */
        struct sched_rt_entity     rt;                   /*   640    48 */
        struct sched_dl_entity     dl __attribute__((__aligned__(8))); /*   688   224 */
        /* --- cacheline 14 boundary (896 bytes) was 16 bytes ago --- */

After:
	...
        unsigned int               rt_priority;          /*   120     4 */

        /* XXX 4 bytes hole, try to pack */

        /* --- cacheline 2 boundary (128 bytes) --- */
        struct sched_entity        se __attribute__((__aligned__(64))); /*   128   448 */
        /* --- cacheline 9 boundary (576 bytes) --- */
        struct sched_rt_entity     rt;                   /*   576    48 */
        struct sched_dl_entity     dl __attribute__((__aligned__(8))); /*   624   224 */
        /* --- cacheline 13 boundary (832 bytes) was 16 bytes ago --- */

Summary diff:
-	/* size: 7040, cachelines: 110, members: 188 */
+	/* size: 6976, cachelines: 109, members: 188 */

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210924025450.4138503-1-keescook@chromium.org
2021-10-14 13:09:58 +02:00
Eric W. Biederman
9230738308 coredump: Don't perform any cleanups before dumping core
Rename coredump_exit_mm to coredump_task_exit and call it from do_exit
before PTRACE_EVENT_EXIT, and before any cleanup work for a task
happens.  This ensures that an accurate copy of the process can be
captured in the coredump as no cleanup for the process happens before
the coredump completes.  This also ensures that PTRACE_EVENT_EXIT
will not be visited by any thread until the coredump is complete.

Add a new flag PF_POSTCOREDUMP so that tasks that have passed through
coredump_task_exit can be recognized and ignored in zap_process.

Now that all of the coredumping happens before exit_mm remove code to
test for a coredump in progress from mm_release.

Replace "may_ptrace_stop()" with a simple test of "current->ptrace".
The other tests in may_ptrace_stop all concern avoiding stopping
during a coredump.  These tests are no longer necessary as it is now
guaranteed that fatal_signal_pending will be set if the code enters
ptrace_stop during a coredump.  The code in ptrace_stop is guaranteed
not to stop if fatal_signal_pending returns true.

Until this change "ptrace_event(PTRACE_EVENT_EXIT)" could call
ptrace_stop without fatal_signal_pending being true, as signals are
dequeued in get_signal before calling do_exit.  This is no longer
an issue as "ptrace_event(PTRACE_EVENT_EXIT)" is no longer reached
until after the coredump completes.

Link: https://lkml.kernel.org/r/874kaax26c.fsf@disp2133
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-06 11:28:39 -05:00
Yafang Shao
847fc0cd06 sched: Introduce task block time in schedstats
Currently in schedstats we have sum_sleep_runtime and iowait_sum, but
there's no metric to show how long the task is in D state.  Once a task in
D state, it means the task is blocked in the kernel, for example the
task may be waiting for a mutex. The D state is more frequent than
iowait, and it is more critital than S state. So it is worth to add a
metric to measure it.

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-5-laoar.shao@gmail.com
2021-10-05 15:51:48 +02:00
Yafang Shao
ceeadb83ae sched: Make struct sched_statistics independent of fair sched class
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.

After the patch, schestats are orgnized as follows,

    struct task_struct {
       ...
       struct sched_entity se;
       struct sched_rt_entity rt;
       struct sched_dl_entity dl;
       ...
       struct sched_statistics stats;
       ...
   };

Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -

    struct sched_entity_stats {
        struct sched_entity     se;
        struct sched_statistics stats;
    } __no_randomize_layout;

Then with the se in a task_group, we can easily get the stats.

The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.

As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
                                  Before               After
      kernel.sched_schedstats=0  5.2~5.4               5.2~5.4
      kernel.sched_schedstats=1  5.3~5.5               5.3~5.5
[These data is a little difference with the earlier version, that is
 because my old test machine is destroyed so I have to use a new
 different test machine.]

Almost no impact on the sched performance.

No functional change.

[lkp@intel.com: reported build failure in earlier version]

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-10-05 15:51:45 +02:00
Peter Zijlstra
83d40a6104 sched: Always inline is_percpu_thread()
vmlinux.o: warning: objtool: check_preemption_disabled()+0x81: call to is_percpu_thread() leaves .noinstr.text section

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928084218.063371959@infradead.org
2021-10-01 13:57:57 +02:00
Thomas Gleixner
3e9cc688e5 sched: Make cond_resched_lock() variants RT aware
The __might_resched() checks in the cond_resched_lock() variants use
PREEMPT_LOCK_OFFSET for preempt count offset checking which takes the
preemption disable by the spin_lock() which is still held at that point
into account.

On PREEMPT_RT enabled kernels spin/rw_lock held sections stay preemptible
which means PREEMPT_LOCK_OFFSET is 0, but that still triggers the
__might_resched() check because that takes RCU read side nesting into
account.

On RT enabled kernels spin/read/write_lock() issue rcu_read_lock() to
resemble the !RT semantics, which means in cond_resched_lock() the might
resched check will see preempt_count() == 0 and rcu_preempt_depth() == 1.

Introduce PREEMPT_LOCK_SCHED_OFFSET for those might resched checks and map
them depending on CONFIG_PREEMPT_RT.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.305969211@linutronix.de
2021-10-01 13:57:51 +02:00
Thomas Gleixner
50e081b96e sched: Make RCU nest depth distinct in __might_resched()
For !RT kernels RCU nest depth in __might_resched() is always expected to
be 0, but on RT kernels it can be non zero while the preempt count is
expected to be always 0.

Instead of playing magic games in interpreting the 'preempt_offset'
argument, rename it to 'offsets' and use the lower 8 bits for the expected
preempt count, allow to hand in the expected RCU nest depth in the upper
bits and adopt the __might_resched() code and related checks and printks.

The affected call sites are updated in subsequent steps.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.243232823@linutronix.de
2021-10-01 13:57:51 +02:00
Thomas Gleixner
7b5ff4bb9a sched: Make cond_resched_*lock() variants consistent vs. might_sleep()
Commit 3427445afd ("sched: Exclude cond_resched() from nested sleep
test") removed the task state check of __might_sleep() for
cond_resched_lock() because cond_resched_lock() is not a voluntary
scheduling point which blocks. It's a preemption point which requires the
lock holder to release the spin lock.

The same rationale applies to cond_resched_rwlock_read/write(), but those
were not touched.

Make it consistent and use the non-state checking __might_resched() there
as well.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.991262778@linutronix.de
2021-10-01 13:57:50 +02:00
Thomas Gleixner
874f670e60 sched: Clean up the might_sleep() underscore zoo
__might_sleep() vs. ___might_sleep() is hard to distinguish. Aside of that
the three underscore variant is exposed to provide a checkpoint for
rescheduling points which are distinct from blocking points.

They are semantically a preemption point which means that scheduling is
state preserving. A real blocking operation, e.g. mutex_lock(), wait*(),
which cannot preserve a task state which is not equal to RUNNING.

While technically blocking on a "sleeping" spinlock in RT enabled kernels
falls into the voluntary scheduling category because it has to wait until
the contended spin/rw lock becomes available, the RT lock substitution code
can semantically be mapped to a voluntary preemption because the RT lock
substitution code and the scheduler are providing mechanisms to preserve
the task state and to take regular non-lock related wakeups into account.

Rename ___might_sleep() to __might_resched() to make the distinction of
these functions clear.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.928693482@linutronix.de
2021-10-01 13:57:49 +02:00
Ard Biesheuvel
bcf9033e54 sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y
THREAD_INFO_IN_TASK moved the CPU field out of thread_info, but this
causes some issues on architectures that define raw_smp_processor_id()
in terms of this field, due to the fact that #include'ing linux/sched.h
to get at struct task_struct is problematic in terms of circular
dependencies.

Given that thread_info and task_struct are the same data structure
anyway when THREAD_INFO_IN_TASK=y, let's move it back so that having
access to the type definition of struct thread_info is sufficient to
reference the CPU number of the current task.

Note that this requires THREAD_INFO_IN_TASK's definition of the
task_thread_info() helper to be updated, as task_cpu() takes a
pointer-to-const, whereas task_thread_info() (which is used to generate
lvalues as well), needs a non-const pointer. So make it a macro instead.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
2021-09-30 16:13:10 +02:00
Linus Torvalds
20621d2f27 Merge tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:

 - Prevent a infinite loop in the MCE recovery on return to user space,
   which was caused by a second MCE queueing work for the same page and
   thereby creating a circular work list.

 - Make kern_addr_valid() handle existing PMD entries, which are marked
   not present in the higher level page table, correctly instead of
   blindly dereferencing them.

 - Pass a valid address to sanitize_phys(). This was caused by the
   mixture of inclusive and exclusive ranges. memtype_reserve() expect
   'end' being exclusive, but sanitize_phys() wants it inclusive. This
   worked so far, but with end being the end of the physical address
   space the fail is exposed.

 - Increase the maximum supported GPIO numbers for 64bit. Newer SoCs
   exceed the previous maximum.

* tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce: Avoid infinite loop for copy from user recovery
  x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
  x86/platform: Increase maximum GPIO number for X86_64
  x86/pat: Pass valid address to sanitize_phys()
2021-09-19 13:29:36 -07:00
Tony Luck
81065b35e2 x86/mce: Avoid infinite loop for copy from user recovery
There are two cases for machine check recovery:

1) The machine check was triggered by ring3 (application) code.
   This is the simpler case. The machine check handler simply queues
   work to be executed on return to user. That code unmaps the page
   from all users and arranges to send a SIGBUS to the task that
   triggered the poison.

2) The machine check was triggered in kernel code that is covered by
   an exception table entry. In this case the machine check handler
   still queues a work entry to unmap the page, etc. but this will
   not be called right away because the #MC handler returns to the
   fix up code address in the exception table entry.

Problems occur if the kernel triggers another machine check before the
return to user processes the first queued work item.

Specifically, the work is queued using the ->mce_kill_me callback
structure in the task struct for the current thread. Attempting to queue
a second work item using this same callback results in a loop in the
linked list of work functions to call. So when the kernel does return to
user, it enters an infinite loop processing the same entry for ever.

There are some legitimate scenarios where the kernel may take a second
machine check before returning to the user.

1) Some code (e.g. futex) first tries a get_user() with page faults
   disabled. If this fails, the code retries with page faults enabled
   expecting that this will resolve the page fault.

2) Copy from user code retries a copy in byte-at-time mode to check
   whether any additional bytes can be copied.

On the other side of the fence are some bad drivers that do not check
the return value from individual get_user() calls and may access
multiple user addresses without noticing that some/all calls have
failed.

Fix by adding a counter (current->mce_count) to keep track of repeated
machine checks before task_work() is called. First machine check saves
the address information and calls task_work_add(). Subsequent machine
checks before that task_work call back is executed check that the address
is in the same page as the first machine check (since the callback will
offline exactly one page).

Expected worst case is four machine checks before moving on (e.g. one
user access with page faults disabled, then a repeat to the same address
with page faults enabled ... repeat in copy tail bytes). Just in case
there is some code that loops forever enforce a limit of 10.

 [ bp: Massage commit message, drop noinstr, fix typo, extend panic
   messages. ]

Fixes: 5567d11c21 ("x86/mce: Send #MC singal from task work")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/YT/IJ9ziLqmtqEPu@agluck-desk2.amr.corp.intel.com
2021-09-14 10:27:03 +02:00
Linus Torvalds
9e9fb7655e Merge tag 'net-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
 "Core:

   - Enable memcg accounting for various networking objects.

  BPF:

   - Introduce bpf timers.

   - Add perf link and opaque bpf_cookie which the program can read out
     again, to be used in libbpf-based USDT library.

   - Add bpf_task_pt_regs() helper to access user space pt_regs in
     kprobes, to help user space stack unwinding.

   - Add support for UNIX sockets for BPF sockmap.

   - Extend BPF iterator support for UNIX domain sockets.

   - Allow BPF TCP congestion control progs and bpf iterators to call
     bpf_setsockopt(), e.g. to switch to another congestion control
     algorithm.

  Protocols:

   - Support IOAM Pre-allocated Trace with IPv6.

   - Support Management Component Transport Protocol.

   - bridge: multicast: add vlan support.

   - netfilter: add hooks for the SRv6 lightweight tunnel driver.

   - tcp:
       - enable mid-stream window clamping (by user space or BPF)
       - allow data-less, empty-cookie SYN with TFO_SERVER_COOKIE_NOT_REQD
       - more accurate DSACK processing for RACK-TLP

   - mptcp:
       - add full mesh path manager option
       - add partial support for MP_FAIL
       - improve use of backup subflows
       - optimize option processing

   - af_unix: add OOB notification support.

   - ipv6: add IFLA_INET6_RA_MTU to expose MTU value advertised by the
     router.

   - mac80211: Target Wake Time support in AP mode.

   - can: j1939: extend UAPI to notify about RX status.

  Driver APIs:

   - Add page frag support in page pool API.

   - Many improvements to the DSA (distributed switch) APIs.

   - ethtool: extend IRQ coalesce uAPI with timer reset modes.

   - devlink: control which auxiliary devices are created.

   - Support CAN PHYs via the generic PHY subsystem.

   - Proper cross-chip support for tag_8021q.

   - Allow TX forwarding for the software bridge data path to be
     offloaded to capable devices.

  Drivers:

   - veth: more flexible channels number configuration.

   - openvswitch: introduce per-cpu upcall dispatch.

   - Add internet mix (IMIX) mode to pktgen.

   - Transparently handle XDP operations in the bonding driver.

   - Add LiteETH network driver.

   - Renesas (ravb):
       - support Gigabit Ethernet IP

   - NXP Ethernet switch (sja1105):
       - fast aging support
       - support for "H" switch topologies
       - traffic termination for ports under VLAN-aware bridge

   - Intel 1G Ethernet
       - support getcrosststamp() with PCIe PTM (Precision Time
         Measurement) for better time sync
       - support Credit-Based Shaper (CBS) offload, enabling HW traffic
         prioritization and bandwidth reservation

   - Broadcom Ethernet (bnxt)
       - support pulse-per-second output
       - support larger Rx rings

   - Mellanox Ethernet (mlx5)
       - support ethtool RSS contexts and MQPRIO channel mode
       - support LAG offload with bridging
       - support devlink rate limit API
       - support packet sampling on tunnels

   - Huawei Ethernet (hns3):
       - basic devlink support
       - add extended IRQ coalescing support
       - report extended link state

   - Netronome Ethernet (nfp):
       - add conntrack offload support

   - Broadcom WiFi (brcmfmac):
       - add WPA3 Personal with FT to supported cipher suites
       - support 43752 SDIO device

   - Intel WiFi (iwlwifi):
       - support scanning hidden 6GHz networks
       - support for a new hardware family (Bz)

   - Xen pv driver:
       - harden netfront against malicious backends

   - Qualcomm mobile
       - ipa: refactor power management and enable automatic suspend
       - mhi: move MBIM to WWAN subsystem interfaces

  Refactor:

   - Ambient BPF run context and cgroup storage cleanup.

   - Compat rework for ndo_ioctl.

  Old code removal:

   - prism54 remove the obsoleted driver, deprecated by the p54 driver.

   - wan: remove sbni/granch driver"

* tag 'net-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1715 commits)
  net: Add depends on OF_NET for LiteX's LiteETH
  ipv6: seg6: remove duplicated include
  net: hns3: remove unnecessary spaces
  net: hns3: add some required spaces
  net: hns3: clean up a type mismatch warning
  net: hns3: refine function hns3_set_default_feature()
  ipv6: remove duplicated 'net/lwtunnel.h' include
  net: w5100: check return value after calling platform_get_resource()
  net/mlxbf_gige: Make use of devm_platform_ioremap_resourcexxx()
  net: mdio: mscc-miim: Make use of the helper function devm_platform_ioremap_resource()
  net: mdio-ipq4019: Make use of devm_platform_ioremap_resource()
  fou: remove sparse errors
  ipv4: fix endianness issue in inet_rtm_getroute_build_skb()
  octeontx2-af: Set proper errorcode for IPv4 checksum errors
  octeontx2-af: Fix static code analyzer reported issues
  octeontx2-af: Fix mailbox errors in nix_rss_flowkey_cfg
  octeontx2-af: Fix loop in free and unmap counter
  af_unix: fix potential NULL deref in unix_dgram_connect()
  dpaa2-eth: Replace strlcpy with strscpy
  octeontx2-af: Use NDC TX for transmit packet data
  ...
2021-08-31 16:43:06 -07:00
Linus Torvalds
0a096f240a Merge tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache flush updates from Thomas Gleixner:
 "A reworked version of the opt-in L1D flush mechanism.

  This is a stop gap for potential future speculation related hardware
  vulnerabilities and a mechanism for truly security paranoid
  applications.

  It allows a task to request that the L1D cache is flushed when the
  kernel switches to a different mm. This can be requested via prctl().

  Changes vs the previous versions:

   - Get rid of the software flush fallback

   - Make the handling consistent with other mitigations

   - Kill the task when it ends up on a SMT enabled core which defeats
     the purpose of L1D flushing obviously"

* tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation: Add L1D flushing Documentation
  x86, prctl: Hook L1D flushing in via prctl
  x86/mm: Prepare for opt-in based L1D flush in switch_mm()
  x86/process: Make room for TIF_SPEC_L1D_FLUSH
  sched: Add task_work callback for paranoid L1D flush
  x86/mm: Refactor cond_ibpb() to support other use cases
  x86/smp: Add a per-cpu view of SMT state
2021-08-30 15:00:33 -07:00
Linus Torvalds
e5e726f7bb Merge tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking and atomics updates from Thomas Gleixner:
 "The regular pile:

   - A few improvements to the mutex code

   - Documentation updates for atomics to clarify the difference between
     cmpxchg() and try_cmpxchg() and to explain the forward progress
     expectations.

   - Simplification of the atomics fallback generator

   - The addition of arch_atomic_long*() variants and generic arch_*()
     bitops based on them.

   - Add the missing might_sleep() invocations to the down*() operations
     of semaphores.

  The PREEMPT_RT locking core:

   - Scheduler updates to support the state preserving mechanism for
     'sleeping' spin- and rwlocks on RT.

     This mechanism is carefully preserving the state of the task when
     blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups
     targeted at the same task into account. The preserved or updated
     (via a regular wakeup) state is restored when the lock has been
     acquired.

   - Restructuring of the rtmutex code so it can be utilized and
     extended for the RT specific lock variants.

   - Restructuring of the ww_mutex code to allow sharing of the ww_mutex
     specific functionality for rtmutex based ww_mutexes.

   - Header file disentangling to allow substitution of the regular lock
     implementations with the PREEMPT_RT variants without creating an
     unmaintainable #ifdef mess.

   - Shared base code for the PREEMPT_RT specific rw_semaphore and
     rwlock implementations.

     Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT
     implementation is writer unfair because it is infeasible to do
     priority inheritance on multiple readers. Experience over the years
     has shown that real-time workloads are not the typical workloads
     which are sensitive to writer starvation.

     The alternative solution would be to allow only a single reader
     which has been tried and discarded as it is a major bottleneck
     especially for mmap_sem. Aside of that many of the writer
     starvation critical usage sites have been converted to a writer
     side mutex/spinlock and RCU read side protections in the past
     decade so that the issue is less prominent than it used to be.

   - The actual rtmutex based lock substitutions for PREEMPT_RT enabled
     kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
     rwlock_t. The spin/rw_lock*() functions disable migration across
     the critical section to preserve the existing semantics vs per-CPU
     variables.

   - Rework of the futex REQUEUE_PI mechanism to handle the case of
     early wake-ups which interleave with a re-queue operation to
     prevent the situation that a task would be blocked on both the
     rtmutex associated to the outer futex and the rtmutex based hash
     bucket spinlock.

     While this situation cannot happen on !RT enabled kernels the
     changes make the underlying concurrency problems easier to
     understand in general. As a result the difference between !RT and
     RT kernels is reduced to the handling of waiting for the critical
     section. !RT kernels simply spin-wait as before and RT kernels
     utilize rcu_wait().

   - The substitution of local_lock for PREEMPT_RT with a spinlock which
     protects the critical section while staying preemptible. The CPU
     locality is established by disabling migration.

  The underlying concepts of this code have been in use in PREEMPT_RT for
  way more than a decade. The code has been refactored several times over
  the years and this final incarnation has been optimized once again to be
  as non-intrusive as possible, i.e. the RT specific parts are mostly
  isolated.

  It has been extensively tested in the 5.14-rt patch series and it has
  been verified that !RT kernels are not affected by these changes"

* tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits)
  locking/rtmutex: Return success on deadlock for ww_mutex waiters
  locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes
  locking/rtmutex: Dequeue waiter on ww_mutex deadlock
  locking/rtmutex: Dont dereference waiter lockless
  locking/semaphore: Add might_sleep() to down_*() family
  locking/ww_mutex: Initialize waiter.ww_ctx properly
  static_call: Update API documentation
  locking/local_lock: Add PREEMPT_RT support
  locking/spinlock/rt: Prepare for RT local_lock
  locking/rtmutex: Add adaptive spinwait mechanism
  locking/rtmutex: Implement equal priority lock stealing
  preempt: Adjust PREEMPT_LOCK_OFFSET for RT
  locking/rtmutex: Prevent lockdep false positive with PI futexes
  futex: Prevent requeue_pi() lock nesting issue on RT
  futex: Simplify handle_early_requeue_pi_wakeup()
  futex: Reorder sanity checks in futex_requeue()
  futex: Clarify comment in futex_requeue()
  futex: Restructure futex_requeue()
  futex: Correct the number of requeued waiters for PI
  futex: Remove bogus condition for requeue PI
  ...
2021-08-30 14:26:36 -07:00
Linus Torvalds
5d3c0db459 Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - The biggest change in this cycle is scheduler support for asymmetric
   scheduling affinity, to support the execution of legacy 32-bit tasks
   on AArch32 systems that also have 64-bit-only CPUs.

   Architectures can fill in this functionality by defining their own
   task_cpu_possible_mask(p). When this is done, the scheduler will make
   sure the task will only be scheduled on CPUs that support it.

   (The actual arm64 specific changes are not part of this tree.)

   For other architectures there will be no change in functionality.

 - Add cgroup SCHED_IDLE support

 - Increase node-distance flexibility & delay determining it until a CPU
   is brought online. (This enables platforms where node distance isn't
   final until the CPU is only.)

 - Deadline scheduler enhancements & fixes

 - Misc fixes & cleanups.

* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  eventfd: Make signal recursion protection a task bit
  sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
  sched: Introduce dl_task_check_affinity() to check proposed affinity
  sched: Allow task CPU affinity to be restricted on asymmetric systems
  sched: Split the guts of sched_setaffinity() into a helper function
  sched: Introduce task_struct::user_cpus_ptr to track requested affinity
  sched: Reject CPU affinity changes based on task_cpu_possible_mask()
  cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
  cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
  cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
  sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
  sched: Cgroup SCHED_IDLE support
  sched/topology: Skip updating masks for non-online nodes
  sched: Replace deprecated CPU-hotplug functions.
  sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
  sched: Fix UCLAMP_FLAG_IDLE setting
  sched/deadline: Fix missing clock update in migrate_task_rq_dl()
  sched/fair: Avoid a second scan of target in select_idle_cpu
  sched/fair: Use prev instead of new target as recent_used_cpu
  sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
  ...
2021-08-30 13:42:10 -07:00
Thomas Gleixner
b542e383d8 eventfd: Make signal recursion protection a task bit
The recursion protection for eventfd_signal() is based on a per CPU
variable and relies on the !RT semantics of spin_lock_irqsave() for
protecting this per CPU variable. On RT kernels spin_lock_irqsave() neither
disables preemption nor interrupts which allows the spin lock held section
to be preempted. If the preempting task invokes eventfd_signal() as well,
then the recursion warning triggers.

Paolo suggested to protect the per CPU variable with a local lock, but
that's heavyweight and actually not necessary. The goal of this protection
is to prevent the task stack from overflowing, which can be achieved with a
per task recursion protection as well.

Replace the per CPU variable with a per task bit similar to other recursion
protection bits like task_struct::in_page_owner. This works on both !RT and
RT kernels and removes as a side effect the extra per CPU storage.

No functional change for !RT kernels.

Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/r/87wnp9idso.ffs@tglx
2021-08-28 01:33:02 +02:00
Will Deacon
234b8ab647 sched: Introduce dl_task_check_affinity() to check proposed affinity
In preparation for restricting the affinity of a task during execve()
on arm64, introduce a new dl_task_check_affinity() helper function to
give an indication as to whether the restricted mask is admissible for
a deadline task.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lore.kernel.org/r/20210730112443.23245-10-will@kernel.org
2021-08-20 12:33:00 +02:00
Will Deacon
07ec77a1d4 sched: Allow task CPU affinity to be restricted on asymmetric systems
Asymmetric systems may not offer the same level of userspace ISA support
across all CPUs, meaning that some applications cannot be executed by
some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do
not feature support for 32-bit applications on both clusters.

Although userspace can carefully manage the affinity masks for such
tasks, one place where it is particularly problematic is execve()
because the CPU on which the execve() is occurring may be incompatible
with the new application image. In such a situation, it is desirable to
restrict the affinity mask of the task and ensure that the new image is
entered on a compatible CPU. From userspace's point of view, this looks
the same as if the incompatible CPUs have been hotplugged off in the
task's affinity mask. Similarly, if a subsequent execve() reverts to
a compatible image, then the old affinity is restored if it is still
valid.

In preparation for restricting the affinity mask for compat tasks on
arm64 systems without uniform support for 32-bit applications, introduce
{force,relax}_compatible_cpus_allowed_ptr(), which respectively restrict
and restore the affinity mask for a task based on the compatible CPUs.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-9-will@kernel.org
2021-08-20 12:33:00 +02:00