Pull signal/exit/ptrace updates from Eric Biederman:
"This set of changes deletes some dead code, makes a lot of cleanups
which hopefully make the code easier to follow, and fixes bugs found
along the way.
The end-game which I have not yet reached yet is for fatal signals
that generate coredumps to be short-circuit deliverable from
complete_signal, for force_siginfo_to_task not to require changing
userspace configured signal delivery state, and for the ptrace stops
to always happen in locations where we can guarantee on all
architectures that the all of the registers are saved and available on
the stack.
Removal of profile_task_ext, profile_munmap, and profile_handoff_task
are the big successes for dead code removal this round.
A bunch of small bug fixes are included, as most of the issues
reported were small enough that they would not affect bisection so I
simply added the fixes and did not fold the fixes into the changes
they were fixing.
There was a bug that broke coredumps piped to systemd-coredump. I
dropped the change that caused that bug and replaced it entirely with
something much more restrained. Unfortunately that required some
rebasing.
Some successes after this set of changes: There are few enough calls
to do_exit to audit in a reasonable amount of time. The lifetime of
struct kthread now matches the lifetime of struct task, and the
pointer to struct kthread is no longer stored in set_child_tid. The
flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
removed. Issues where task->exit_code was examined with
signal->group_exit_code should been examined were fixed.
There are several loosely related changes included because I am
cleaning up and if I don't include them they will probably get lost.
The original postings of these changes can be found at:
https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.org
https://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.org
https://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org
I trimmed back the last set of changes to only the obviously correct
once. Simply because there was less time for review than I had hoped"
* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
ptrace/m68k: Stop open coding ptrace_report_syscall
ptrace: Remove unused regs argument from ptrace_report_syscall
ptrace: Remove second setting of PT_SEIZED in ptrace_attach
taskstats: Cleanup the use of task->exit_code
exit: Use the correct exit_code in /proc/<pid>/stat
exit: Fix the exit_code for wait_task_zombie
exit: Coredumps reach do_group_exit
exit: Remove profile_handoff_task
exit: Remove profile_task_exit & profile_munmap
signal: clean up kernel-doc comments
signal: Remove the helper signal_group_exit
signal: Rename group_exit_task group_exec_task
coredump: Stop setting signal->group_exit_task
signal: Remove SIGNAL_GROUP_COREDUMP
signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
signal: Make coredump handling explicit in complete_signal
signal: Have prepare_signal detect coredumps using signal->core_state
signal: Have the oom killer detect coredumps using signal->core_state
exit: Move force_uaccess back into do_exit
exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
...
Merge misc updates from Andrew Morton:
"146 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak,
dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap,
memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb,
userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp,
ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and
damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits)
mm/damon: hide kernel pointer from tracepoint event
mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log
mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging
mm/damon/dbgfs: remove an unnecessary variable
mm/damon: move the implementation of damon_insert_region to damon.h
mm/damon: add access checking for hugetlb pages
Docs/admin-guide/mm/damon/usage: update for schemes statistics
mm/damon/dbgfs: support all DAMOS stats
Docs/admin-guide/mm/damon/reclaim: document statistics parameters
mm/damon/reclaim: provide reclamation statistics
mm/damon/schemes: account how many times quota limit has exceeded
mm/damon/schemes: account scheme actions that successfully applied
mm/damon: remove a mistakenly added comment for a future feature
Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts
Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning
Docs/admin-guide/mm/damon/usage: remove redundant information
Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks
mm/damon: convert macro functions to static inline functions
mm/damon: modify damon_rand() macro to static inline function
mm/damon: move damon_rand() definition into damon.h
...
The patch to add anonymous vma names causes a build failure in some
configurations:
include/linux/mm_types.h: In function 'is_same_vma_anon_name':
include/linux/mm_types.h:924:37: error: implicit declaration of function 'strcmp' [-Werror=implicit-function-declaration]
924 | return name && vma_name && !strcmp(name, vma_name);
| ^~~~~~
include/linux/mm_types.h:22:1: note: 'strcmp' is defined in header '<string.h>'; did you forget to '#include <string.h>'?
This should not really be part of linux/mm_types.h in the first place,
as that header is meant to only contain structure defintions and need a
minimum set of indirect includes itself.
While the header clearly includes more than it should at this point,
let's not make it worse by including string.h as well, which would pull
in the expensive (compile-speed wise) fortify-string logic.
Move the new functions into a separate header that only needs to be
included in a couple of locations.
Link: https://lkml.kernel.org/r/20211207125710.2503446-1-arnd@kernel.org
Fixes: "mm: add a field to store names for private anonymous memory"
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Colin Cross <ccross@google.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In many userspace applications, and especially in VM based applications
like Android uses heavily, there are multiple different allocators in
use. At a minimum there is libc malloc and the stack, and in many cases
there are libc malloc, the stack, direct syscalls to mmap anonymous
memory, and multiple VM heaps (one for small objects, one for big
objects, etc.). Each of these layers usually has its own tools to
inspect its usage; malloc by compiling a debug version, the VM through
heap inspection tools, and for direct syscalls there is usually no way
to track them.
On Android we heavily use a set of tools that use an extended version of
the logic covered in Documentation/vm/pagemap.txt to walk all pages
mapped in userspace and slice their usage by process, shared (COW) vs.
unique mappings, backing, etc. This can account for real physical
memory usage even in cases like fork without exec (which Android uses
heavily to share as many private COW pages as possible between
processes), Kernel SamePage Merging, and clean zero pages. It produces
a measurement of the pages that only exist in that process (USS, for
unique), and a measurement of the physical memory usage of that process
with the cost of shared pages being evenly split between processes that
share them (PSS).
If all anonymous memory is indistinguishable then figuring out the real
physical memory usage (PSS) of each heap requires either a pagemap
walking tool that can understand the heap debugging of every layer, or
for every layer's heap debugging tools to implement the pagemap walking
logic, in which case it is hard to get a consistent view of memory
across the whole system.
Tracking the information in userspace leads to all sorts of problems.
It either needs to be stored inside the process, which means every
process has to have an API to export its current heap information upon
request, or it has to be stored externally in a filesystem that somebody
needs to clean up on crashes. It needs to be readable while the process
is still running, so it has to have some sort of synchronization with
every layer of userspace. Efficiently tracking the ranges requires
reimplementing something like the kernel vma trees, and linking to it
from every layer of userspace. It requires more memory, more syscalls,
more runtime cost, and more complexity to separately track regions that
the kernel is already tracking.
This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a
userspace-provided name for anonymous vmas. The names of named
anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as
[anon:<name>].
Userspace can set the name for a region of memory by calling
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name)
Setting the name to NULL clears it. The name length limit is 80 bytes
including NUL-terminator and is checked to contain only printable ascii
characters (including space), except '[',']','\','$' and '`'.
Ascii strings are being used to have a descriptive identifiers for vmas,
which can be understood by the users reading /proc/pid/maps or
/proc/pid/smaps. Names can be standardized for a given system and they
can include some variable parts such as the name of the allocator or a
library, tid of the thread using it, etc.
The name is stored in a pointer in the shared union in vm_area_struct
that points to a null terminated string. Anonymous vmas with the same
name (equivalent strings) and are otherwise mergeable will be merged.
The name pointers are not shared between vmas even if they contain the
same name. The name pointer is stored in a union with fields that are
only used on file-backed mappings, so it does not increase memory usage.
CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this
feature. It keeps the feature disabled by default to prevent any
additional memory overhead and to avoid confusing procfs parsers on
systems which are not ready to support named anonymous vmas.
The patch is based on the original patch developed by Colin Cross, more
specifically on its latest version [1] posted upstream by Sumit Semwal.
It used a userspace pointer to store vma names. In that design, name
pointers could be shared between vmas. However during the last
upstreaming attempt, Kees Cook raised concerns [2] about this approach
and suggested to copy the name into kernel memory space, perform
validity checks [3] and store as a string referenced from
vm_area_struct.
One big concern is about fork() performance which would need to strdup
anonymous vma names. Dave Hansen suggested experimenting with
worst-case scenario of forking a process with 64k vmas having longest
possible names [4]. I ran this experiment on an ARM64 Android device
and recorded a worst-case regression of almost 40% when forking such a
process.
This regression is addressed in the followup patch which replaces the
pointer to a name with a refcounted structure that allows sharing the
name pointer between vmas of the same name. Instead of duplicating the
string during fork() or when splitting a vma it increments the refcount.
[1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/
[2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/
[3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/
[4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/
Changes for prctl(2) manual page (in the options section):
PR_SET_VMA
Sets an attribute specified in arg2 for virtual memory areas
starting from the address specified in arg3 and spanning the
size specified in arg4. arg5 specifies the value of the attribute
to be set. Note that assigning an attribute to a virtual memory
area might prevent it from being merged with adjacent virtual
memory areas due to the difference in that attribute's value.
Currently, arg2 must be one of:
PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. arg5 should
be a pointer to a null-terminated string containing the
name. The name length including null byte cannot exceed
80 bytes. If arg5 is NULL, the name of the appropriate
anonymous virtual memory areas will be reset. The name
can contain only printable ascii characters (including
space), except '[',']','\','$' and '`'.
This feature is available only if the kernel is built with
the CONFIG_ANON_VMA_NAME option enabled.
[surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table]
Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com
[surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy,
added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the
work here was done by Colin Cross, therefore, with his permission, keeping
him as the author]
Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com
Signed-off-by: Colin Cross <ccross@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Glauber <jan.glauber@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Landley <rob@landley.net>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Shaohua Li <shli@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All profile_handoff_task does is notify the task_free_notifier chain.
The helpers task_handoff_register and task_handoff_unregister are used
to add and delete entries from that chain and are never called.
So remove the dead code and make it much easier to read and reason
about __put_task_struct.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/87fspyw6m0.fsf@email.froward.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The point of using set_child_tid to hold the kthread pointer was that
it already did what is necessary. There are now restrictions on when
set_child_tid can be initialized and when set_child_tid can be used in
schedule_tail. Which indicates that continuing to use set_child_tid
to hold the kthread pointer is a bad idea.
Instead of continuing to use the set_child_tid field of task_struct
generalize the pf_io_worker field of task_struct and use it to hold
the kthread pointer.
Rename pf_io_worker (which is a void * pointer) to worker_private so
it can be used to store kthreads struct kthread pointer. Update the
kthread code to store the kthread pointer in the worker_private field.
Remove the places where set_child_tid had to be dealt with carefully
because kthreads also used it.
Link: https://lkml.kernel.org/r/CAHk-=wgtFAA9SbVYg0gR1tqPMC17-NYcs0GQkaYg1bGhh1uJQQ@mail.gmail.com
Link: https://lkml.kernel.org/r/87a6grvqy8.fsf_-_@email.froward.int.ebiederm.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
I just fixed a bug in copy_process when using the label
bad_fork_cleanup_threadgroup_lock. While fixing the bug I looked
closer at the label and realized it has been misnamed since
568ac88821 ("cgroup: reduce read locked section of
cgroup_threadgroup_rwsem during fork").
Fix the name so that fork is easier to understand.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Mark Brown <broonie@kernel.org> reported:
> This is also causing further build errors including but not limited to:
>
> /tmp/next/build/kernel/fork.c: In function 'copy_process':
> /tmp/next/build/kernel/fork.c:2106:4: error: label 'bad_fork_cleanup_threadgroup_lock' used but not defined
> 2106 | goto bad_fork_cleanup_threadgroup_lock;
> | ^~~~
It turns out that I messed up and was depending upon a label protected
by an ifdef. Move the label out of the ifdef as the ifdef around the label
no longer makes sense (if it ever did).
Link: https://lkml.kernel.org/r/YbugCP144uxXvRsk@sirena.org.uk
Fixes: 40966e316f ("kthread: Ensure struct kthread is present for all kthreads")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Today the rules are a bit iffy and arbitrary about which kernel
threads have struct kthread present. Both idle threads and thread
started with create_kthread want struct kthread present so that is
effectively all kernel threads. Make the rule that if PF_KTHREAD
and the task is running then struct kthread is present.
This will allow the kernel thread code to using tsk->exit_code
with different semantics from ordinary processes.
To make ensure that struct kthread is present for all
kernel threads move it's allocation into copy_process.
Add a deallocation of struct kthread in exec for processes
that were kernel threads.
Move the allocation of struct kthread for the initial thread
earlier so that it is not repeated for each additional idle
thread.
Move the initialization of struct kthread into set_kthread_struct
so that the structure is always and reliably initailized.
Clear set_child_tid in free_kthread_struct to ensure the kthread
struct is reliably freed during exec. The function
free_kthread_struct does not need to clear vfork_done during exec as
exec_mm_release called from exec_mmap has already cleared vfork_done.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull timer fix from Thomas Gleixner:
"A single fix for POSIX CPU timers to address a problem where POSIX CPU
timer delivery stops working for a new child task because
copy_process() copies state information which is only valid for the
parent task"
* tag 'timers-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Clear task::posix_cputimers_work in copy_process()
Merge more updates from Andrew Morton:
"87 patches.
Subsystems affected by this patch series: mm (pagecache and hugetlb),
procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs,
init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork,
sysvfs, kcov, gdb, resource, selftests, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits)
ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL
ipc: check checkpoint_restore_ns_capable() to modify C/R proc files
selftests/kselftest/runner/run_one(): allow running non-executable files
virtio-mem: disallow mapping virtio-mem memory via /dev/mem
kernel/resource: disallow access to exclusive system RAM regions
kernel/resource: clean up and optimize iomem_is_exclusive()
scripts/gdb: handle split debug for vmlinux
kcov: replace local_irq_save() with a local_lock_t
kcov: avoid enable+disable interrupts if !in_task()
kcov: allocate per-CPU memory on the relevant node
Documentation/kcov: define `ip' in the example
Documentation/kcov: include types.h in the example
sysv: use BUILD_BUG_ON instead of runtime check
kernel/fork.c: unshare(): use swap() to make code cleaner
seq_file: fix passing wrong private data
seq_file: move seq_escape() to a header
signal: remove duplicate include in signal.h
crash_dump: remove duplicate include in crash_dump.h
crash_dump: fix boolreturn.cocci warning
hfs/hfsplus: use WARN_ON for sanity check
...
Pull per signal_struct coredumps from Eric Biederman:
"Current coredumps are mixed up with the exit code, the signal handling
code, and the ptrace code making coredumps much more complicated than
necessary and difficult to follow.
This series of changes starts with ptrace_stop and cleans it up,
making it easier to follow what is happening in ptrace_stop. Then
cleans up the exec interactions with coredumps. Then cleans up the
coredump interactions with exit. Finally the coredump interactions
with the signal handling code is cleaned up.
The first and last changes are bug fixes for minor bugs.
I believe the fact that vfork followed by execve can kill the process
the called vfork if exec fails is sufficient justification to change
the userspace visible behavior.
In previous discussions some of these changes were organized
differently and individually appeared to make the code base worse. As
currently written I believe they all stand on their own as cleanups
and bug fixes.
Which means that even if the worst should happen and the last change
needs to be reverted for some unimaginable reason, the code base will
still be improved.
If the worst does not happen there are a more cleanups that can be
made. Signals that generate coredumps can easily become eligible for
short circuit delivery in complete_signal. The entire rendezvous for
generating a coredump can move into get_signal. The function
force_sig_info_to_task be written in a way that does not modify the
signal handling state of the target task (because coredumps are
eligible for short circuit delivery). Many of these future cleanups
can be done another way but nothing so cleanly as if coredumps become
per signal_struct"
* 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
coredump: Limit coredumps to a single thread group
coredump: Don't perform any cleanups before dumping core
exit: Factor coredump_exit_mm out of exit_mm
exec: Check for a pending fatal signal instead of core_state
ptrace: Remove the unnecessary arguments from arch_ptrace_stop
signal: Remove the bogus sigkill_pending in ptrace_stop
copy_process currently copies task_struct.posix_cputimers_work as-is. If a
timer interrupt arrives while handling clone and before dup_task_struct
completes then the child task will have:
1. posix_cputimers_work.scheduled = true
2. posix_cputimers_work.work queued.
copy_process clears task_struct.task_works, so (2) will have no effect and
posix_cpu_timers_work will never run (not to mention it doesn't make sense
for two tasks to share a common linked list).
Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is
never cleared. Since scheduled is set, future timer interrupts will skip
scheduling work, with the ultimate result that the task will never receive
timer expirations.
Together, the complete flow is:
1. Task 1 calls clone(), enters kernel.
2. Timer interrupt fires, schedules task work on Task 1.
2a. task_struct.posix_cputimers_work.scheduled = true
2b. task_struct.posix_cputimers_work.work added to
task_struct.task_works.
3. dup_task_struct() copies Task 1 to Task 2.
4. copy_process() clears task_struct.task_works for Task 2.
5. Future timer interrupts on Task 2 see
task_struct.posix_cputimers_work.scheduled = true and skip scheduling
work.
Fix this by explicitly clearing contents of task_struct.posix_cputimers_work
in copy_process(). This was never meant to be shared or inherited across
tasks in the first place.
Fixes: 1fb497dd00 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work")
Reported-by: Rhys Hiltner <rhys@justin.tv>
Signed-off-by: Michael Pratt <mpratt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
Pull scheduler updates from Thomas Gleixner:
- Revert the printk format based wchan() symbol resolution as it can
leak the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset
and __sched_setscheduler() introduced a new lock dependency which is
now triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
sched/fair: Cleanup newidle_balance
sched/fair: Remove sysctl_sched_migration_cost condition
sched/fair: Wait before decaying max_newidle_lb_cost
sched/fair: Skip update_blocked_averages if we are defering load balance
sched/fair: Account update_blocked_averages in newidle_balance cost
x86: Fix __get_wchan() for !STACKTRACE
sched,x86: Fix L2 cache mask
sched/core: Remove rq_relock()
sched: Improve wake_up_all_idle_cpus() take #2
irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
sched: Add cluster scheduler level for x86
sched: Add cluster scheduler level in core and related Kconfig for ARM64
topology: Represent clusters of CPUs within a die
sched: Disable -Wunused-but-set-variable
sched: Add wrapper for get_wchan() to keep task blocked
x86: Fix get_wchan() to support the ORC unwinder
proc: Use task_is_running() for wchan in /proc/$pid/stat
...
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.
parent doing fork() | someone moving the parent
| to another cgroup
-------------------------------+-------------------------------
copy_process()
+ dup_task_struct()<1>
parent move to another cgroup,
and free the old cgroup. <2>
+ sched_fork()
+ __set_task_cpu()<3>
+ task_fork_fair()
+ sched_slice()<4>
In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:
(1) parent copy its sched_task_group to child at <1>;
(2) someone move the parent to another cgroup and free the old
cgroup at <2>;
(3) the sched_task_group and cfs_rq that belong to the old cgroup
will be accessed at <3> and <4>, which cause a panic:
[] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
[] Oops: 0000 [#1] SMP PTI
[] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1
[] RIP: 0010:sched_slice+0x84/0xc0
[] Call Trace:
[] task_fork_fair+0x81/0x120
[] sched_fork+0x132/0x240
[] copy_process.part.5+0x675/0x20e0
[] ? __handle_mm_fault+0x63f/0x690
[] _do_fork+0xcd/0x3b0
[] do_syscall_64+0x5d/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x65/0xca
[] RIP: 0033:0x7f04418cd7e1
Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().
Fixes: 8323f26ce3 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
Today when a signal is delivered with a handler of SIG_DFL whose
default behavior is to generate a core dump not only that process but
every process that shares the mm is killed.
In the case of vfork this looks like a real world problem. Consider
the following well defined sequence.
if (vfork() == 0) {
execve(...);
_exit(EXIT_FAILURE);
}
If a signal that generates a core dump is received after vfork but
before the execve changes the mm the process that called vfork will
also be killed (as the mm is shared).
Similarly if the execve fails after the point of no return the kernel
delivers SIGSEGV which will kill both the exec'ing process and because
the mm is shared the process that called vfork as well.
As far as I can tell this behavior is a violation of people's
reasonable expectations, POSIX, and is unnecessarily fragile when the
system is low on memory.
Solve this by making a userspace visible change to only kill a single
process/thread group. This is possible because Jann Horn recently
modified[1] the coredump code so that the mm can safely be modified
while the coredump is happening. With LinuxThreads long gone I don't
expect anyone to have a notice this behavior change in practice.
To accomplish this move the core_state pointer from mm_struct to
signal_struct, which allows different thread groups to coredump
simultatenously.
In zap_threads remove the work to kill anything except for the current
thread group.
v2: Remove core_state from the VM_BUG_ON_MM print to fix
compile failure when CONFIG_DEBUG_VM is enabled.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
[1] a07279c9a8 ("binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot")
Fixes: d89f3847def4 ("[PATCH] thread-aware coredumps, 2.5.43-C3")
History-tree: git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Link: https://lkml.kernel.org/r/87y27mvnke.fsf@disp2133
Link: https://lkml.kernel.org/r/20211007144701.67592574@canb.auug.org.au
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Rename coredump_exit_mm to coredump_task_exit and call it from do_exit
before PTRACE_EVENT_EXIT, and before any cleanup work for a task
happens. This ensures that an accurate copy of the process can be
captured in the coredump as no cleanup for the process happens before
the coredump completes. This also ensures that PTRACE_EVENT_EXIT
will not be visited by any thread until the coredump is complete.
Add a new flag PF_POSTCOREDUMP so that tasks that have passed through
coredump_task_exit can be recognized and ignored in zap_process.
Now that all of the coredumping happens before exit_mm remove code to
test for a coredump in progress from mm_release.
Replace "may_ptrace_stop()" with a simple test of "current->ptrace".
The other tests in may_ptrace_stop all concern avoiding stopping
during a coredump. These tests are no longer necessary as it is now
guaranteed that fatal_signal_pending will be set if the code enters
ptrace_stop during a coredump. The code in ptrace_stop is guaranteed
not to stop if fatal_signal_pending returns true.
Until this change "ptrace_event(PTRACE_EVENT_EXIT)" could call
ptrace_stop without fatal_signal_pending being true, as signals are
dequeued in get_signal before calling do_exit. This is no longer
an issue as "ptrace_event(PTRACE_EVENT_EXIT)" is no longer reached
until after the coredump completes.
Link: https://lkml.kernel.org/r/874kaax26c.fsf@disp2133
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
After fork, the child process will get incorrect (2x) hugetlb_usage. If
a process uses 5 2MB hugetlb pages in an anonymous mapping,
HugetlbPages: 10240 kB
and then forks, the child will show,
HugetlbPages: 20480 kB
The reason for double the amount is because hugetlb_usage will be copied
from the parent and then increased when we copy page tables from parent
to child. Child will have 2x actual usage.
Fix this by adding hugetlb_count_init in mm_init.
Link: https://lkml.kernel.org/r/20210826071742.877-1-liuzixian4@huawei.com
Fixes: 5d317b2b65 ("mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status")
Signed-off-by: Liu Zixian <liuzixian4@huawei.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
"147 patches, based on 7d2a07b769.
Subsystems affected by this patch series: mm (memory-hotplug, rmap,
ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
selftests, ipc, and scripts"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
scripts: check_extable: fix typo in user error message
mm/workingset: correct kernel-doc notations
ipc: replace costly bailout check in sysvipc_find_ipc()
selftests/memfd: remove unused variable
Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
configs: remove the obsolete CONFIG_INPUT_POLLDEV
prctl: allow to setup brk for et_dyn executables
pid: cleanup the stale comment mentioning pidmap_init().
kernel/fork.c: unexport get_{mm,task}_exe_file
coredump: fix memleak in dump_vma_snapshot()
fs/coredump.c: log if a core dump is aborted due to changed file permissions
nilfs2: use refcount_dec_and_lock() to fix potential UAF
nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
nilfs2: fix NULL pointer in nilfs_##name##_attr_release
nilfs2: fix memory leak in nilfs_sysfs_create_device_group
trap: cleanup trap_init()
init: move usermodehelper_enable() to populate_rootfs()
...
Pull MAP_DENYWRITE removal from David Hildenbrand:
"Remove all in-tree usage of MAP_DENYWRITE from the kernel and remove
VM_DENYWRITE.
There are some (minor) user-visible changes:
- We no longer deny write access to shared libaries loaded via legacy
uselib(); this behavior matches modern user space e.g. dlopen().
- We no longer deny write access to the elf interpreter after exec
completed, treating it just like shared libraries (which it often
is).
- We always deny write access to the file linked via /proc/pid/exe:
sys_prctl(PR_SET_MM_MAP/EXE_FILE) will fail if write access to the
file cannot be denied, and write access to the file will remain
denied until the link is effectivel gone (exec, termination,
sys_prctl(PR_SET_MM_MAP/EXE_FILE)) -- just as if exec'ing the file.
Cross-compiled for a bunch of architectures (alpha, microblaze, i386,
s390x, ...) and verified via ltp that especially the relevant tests
(i.e., creat07 and execve04) continue working as expected"
* tag 'denywrite-for-5.15' of git://github.com/davidhildenbrand/linux:
fs: update documentation of get_write_access() and friends
mm: ignore MAP_DENYWRITE in ksys_mmap_pgoff()
mm: remove VM_DENYWRITE
binfmt: remove in-tree usage of MAP_DENYWRITE
kernel/fork: always deny write access to current MM exe_file
kernel/fork: factor out replacing the current MM exe_file
binfmt: don't use MAP_DENYWRITE when loading shared libraries via uselib()
All in-tree users of MAP_DENYWRITE are gone. MAP_DENYWRITE cannot be
set from user space, so all users are gone; let's remove it.
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Christian König <christian.koenig@amd.com>
Signed-off-by: David Hildenbrand <david@redhat.com>