An arch may want to tweak the mmap prot flags for an
ELFexecutable's initial mappings. For example, arm64 is going to
need to add PROT_BTI for executable pages in an ELF process whose
executable is marked as using Branch Target Identification (an
ARMv8.5-A control flow integrity feature).
So that this can be done in a generic way, add a hook
arch_elf_adjust_prot() to modify the prot flags as desired: arches
can select CONFIG_HAVE_ELF_PROT and implement their own backend
where necessary.
By default, leave the prot flags unchanged.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ELF program properties will be needed for detecting whether to
enable optional architecture or ABI features for a new ELF process.
For now, there are no generic properties that we care about, so do
nothing unless CONFIG_ARCH_USE_GNU_PROPERTY=y.
Otherwise, the presence of properties using the PT_PROGRAM_PROPERTY
phdrs entry (if any), and notify each property to the arch code.
For now, the added code is not used.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
MIPS is introducing new variants of its O32 ABI which differ in their
handling of floating point, in order to enable a gradual transition
towards a world where mips32 binaries can take advantage of new hardware
features only available when configured for certain FP modes. In order
to do this ELF binaries are being augmented with a new section that
indicates, amongst other things, the FP mode requirements of the binary.
The presence & location of such a section is indicated by a program
header in the PT_LOPROC ... PT_HIPROC range.
In order to allow the MIPS architecture code to examine the program
header & section in question, pass all program headers in this range
to an architecture-specific arch_elf_pt_proc function. This function
may return an error if the header is deemed invalid or unsuitable for
the system, in which case that error will be returned from
load_elf_binary and upwards through the execve syscall.
A means is required for the architecture code to make a decision once
it is known that all such headers have been seen, but before it is too
late to return from an execve syscall. For this purpose the
arch_check_elf function is added, and called once, after all PT_LOPROC
to PT_HIPROC headers have been passed to arch_elf_pt_proc but before
the code which invoked execve has been lost. This enables the
architecture code to make a decision based upon all the headers present
in an ELF binary and its interpreter, as is required to forbid
conflicting FP ABI requirements between an ELF & its interpreter.
In order to allow data to be stored throughout the calls to the above
functions, struct arch_elf_state is introduced.
Finally a variant of the SET_PERSONALITY macro is introduced which
accepts a pointer to the struct arch_elf_state, allowing it to act
based upon state observed from the architecture specific program
headers.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/7679/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Existing PRSTATUS note contains only si_signo, si_code, si_errno fields
from the siginfo of the signal which caused core to be dumped.
There are tools which try to analyze crashes for possible security
implications, and they want to use, among other data, si_addr field from
the SIGSEGV.
This patch adds a new elf note, NT_SIGINFO, which contains the complete
siginfo_t of the signal which killed the process.
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Amerigo Wang <amwang@redhat.com>
Cc: "Jonathan M. Foote" <jmfoote@cert.org>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull arm64 support from Catalin Marinas:
"Linux support for the 64-bit ARM architecture (AArch64)
Features currently supported:
- 39-bit address space for user and kernel (each)
- 4KB and 64KB page configurations
- Compat (32-bit) user applications (ARMv7, EABI only)
- Flattened Device Tree (mandated for all AArch64 platforms)
- ARM generic timers"
* tag 'arm64-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (35 commits)
arm64: ptrace: remove obsolete ptrace request numbers from user headers
arm64: Do not set the SMP/nAMP processor bit
arm64: MAINTAINERS update
arm64: Build infrastructure
arm64: Miscellaneous header files
arm64: Generic timers support
arm64: Loadable modules
arm64: Miscellaneous library functions
arm64: Performance counters support
arm64: Add support for /proc/sys/debug/exception-trace
arm64: Debugging support
arm64: Floating point and SIMD
arm64: 32-bit (compat) applications support
arm64: User access library functions
arm64: Signal handling support
arm64: VDSO support
arm64: System calls handling
arm64: ELF definitions
arm64: SMP support
arm64: DMA mapping API
...
Allow user-space processes to use transactional execution (TX).
If the TX facility is available user space programs can use
transactions for fine-grained serialization based on the data
objects that are referenced during a transaction. This is
useful for lockless data structures and speculative compiler
optimizations.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
elf_read_implies_exec() is a kernel-only feature as the second parameter is a
constant that isn't exported to userspace. Not only that, but the
arch-specific overrides are not exported either.
So hide the macro from userspace.
Similarly, struct file should not be predeclared in userspace.
Signed-off-by: David Howells <dhowells@redhat.com>
For a ERESTARTNOHAND/ERESTARTSYS/ERESTARTNOINTR restarting system call
do_signal will prepare the restart of the system call with a rewind of
the PSW before calling get_signal_to_deliver (where the debugger might
take control). For A ERESTART_RESTARTBLOCK restarting system call
do_signal will set -EINTR as return code.
There are two issues with this approach:
1) strace never sees ERESTARTNOHAND, ERESTARTSYS, ERESTARTNOINTR or
ERESTART_RESTARTBLOCK as the rewinding already took place or the
return code has been changed to -EINTR
2) if get_signal_to_deliver does not return with a signal to deliver
the restart via the repeat of the svc instruction is left in place.
This opens a race if another signal is made pending before the
system call instruction can be reexecuted. The original system call
will be restarted even if the second signal would have ended the
system call with -EINTR.
These two issues can be solved by dropping the early rewind of the
system call before get_signal_to_deliver has been called and by using
the TIF_RESTART_SVC magic to do the restart if no signal has to be
delivered. The only situation where the system call restart via the
repeat of the svc instruction is appropriate is when a SA_RESTART
signal is delivered to user space.
Unfortunately this breaks inferior calls by the debugger again. The
system call number and the length of the system call instruction is
lost over the inferior call and user space will see ERESTARTNOHAND/
ERESTARTSYS/ERESTARTNOINTR/ERESTART_RESTARTBLOCK. To correct this a
new ptrace interface is added to save/restore the system call number
and system call instruction length.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The VFP registers are not currently included in coredumps,
and there's no existing note type where they can sensibly be
included, so this patch defines a dedicated note type for them.
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Will Deacon <Will.Deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Copy the last breaking event address from the lowcore to a new
field in the thread_struct on each system entry. Add a new
ptrace request PTRACE_GET_LAST_BREAK and a new utrace regset
REGSET_LAST_BREAK to query the last breaking event.
This is useful for debugging wild branches in user space code.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
S390 ELF core dump currently only contains the PSW, the general purpose
registers, the floating point registers and the access registers stored
in PRSTATUS/PRFPREG note sections.
For analyzing s390 kernel problems additional registers are important.
In order to be able to include these registers to a kernel ELF core dump,
this patch adds the following five new note sections to elf.h:
* NT_S390_TIMER: S390 timer register
* NT_S390_TODCMP: S390 TOD comparator register
* NT_S390_TODPREG: S390 TOD programmable register
* NT_S390_CTRS: S390 control registers
* NT_S390_PREFIX: S390 prefix register
The new note sections have been already defined and accepted in the upstream
binutils package.
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Generic support for PTRACE_GETREGSET/PTRACE_SETREGSET commands which
export the regsets supported by each architecture using the correponding
NT_* types. These NT_* types are already part of the userland ABI, used
in representing the architecture specific register sets as different NOTES
in an ELF core file.
'addr' parameter for the ptrace system call encode the REGSET type (using
the corresppnding NT_* type) and the 'data' parameter points to the
struct iovec having the user buffer and the length of that buffer.
struct iovec iov = { buf, len};
ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
On successful completion, iov.len will be updated by the kernel specifying
how much the kernel has written/read to/from the user's iov.buf.
x86 extended state registers are primarily exported using this interface.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100211195614.886724710@sbs-t61.sc.intel.com>
Acked-by: Hongjiu Lu <hjl.tools@gmail.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Add the xstate regset support which helps extend the kernel ptrace and the
core-dump interfaces to support AVX state etc.
This regset interface is designed to support all the future state that gets
supported using xsave/xrstor infrastructure.
Looking at the memory layout saved by "xsave", one can't say which state
is represented in the memory layout. This is because if a particular state is
in init state, in the xsave hdr it can be represented by bit '0'. And hence
we can't really say by the xsave header wether a state is in init state or
the state is not saved in the memory layout.
And hence the xsave memory layout available through this regset
interface uses SW usable bytes [464..511] to convey what state is represented
in the memory layout.
First 8 bytes of the sw_usable_bytes[464..467] will be set to OS enabled xstate
mask(which is same as the 64bit mask returned by the xgetbv's xCR0).
The note NT_X86_XSTATE represents the extended state information in the
core file, using the above mentioned memory layout.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100211195614.802495327@sbs-t61.sc.intel.com>
Signed-off-by: Hongjiu Lu <hjl.tools@gmail.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The elf notes number for the upper register halves is s390 specific.
Change the name of the elf notes to include S390.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>