The helper functions can_len2dlc and can_dlc2len are only relevant for
CAN FD data length code (DLC) conversion.
To fit the introduced can_cc_dlc2len for Classical CAN we rename:
can_dlc2len -> can_fd_dlc2len to get the payload length from the DLC
can_len2dlc -> can_fd_len2dlc to get the DLC from the payload length
Suggested-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201110101852.1973-6-socketcan@hartkopp.net
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The naming of can_dlc as element of struct can_frame and also as variable
name is misleading as it claims to be a 'data length CODE' but in reality
it always was a plain data length.
With the indroduction of a new 'len' element in struct can_frame we can now
remove can_dlc as name and make clear which of the former uses was a plain
length (-> 'len') or a data length code (-> 'dlc') value.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201120100444.3199-1-socketcan@hartkopp.net
[mkl: gs_usb: keep struct gs_host_frame::can_dlc as is]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Rename macro CAN_CALC_SYNC_SEG to CAN_SYNC_SEG and make it available
through include/linux/can/dev.h
Add an helper function can_bit_time() which returns the duration (in
time quanta) of one CAN bit.
Rationale for this patch: the sync segment and the bit time are two
concepts which are defined in the CAN ISO standard. Device drivers for
CAN might need those.
Please refer to ISO 11898-1:2015, section 11.3.1.1 "Bit time" for
additional information.
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20201002154219.4887-6-mailhol.vincent@wanadoo.fr
[mkl: Let can_bit_time() return an unsinged int, make argument const]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The function can_put_echo_skb() can fail for several reasons. It may
fail due to OOM, but when it fails it's usually due to locking problems
in the driver.
In order to help developing and debugging of new drivers propagate error
value in case of errors.
Link: https://lore.kernel.org/r/20200915223527.1417033-12-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
KMSAN sysbot detected a read access to an untinitialized value in the
headroom of an outgoing CAN related sk_buff. When using CAN sockets this
area is filled appropriately - but when using a packet socket this
initialization is missing.
The problematic read access occurs in the CAN receive path which can
only be triggered when the sk_buff is sent through a (virtual) CAN
interface. So we check in the sending path whether we need to perform
the missing initializations.
Fixes: d3b58c47d3 ("can: replace timestamp as unique skb attribute")
Reported-by: syzbot+b02ff0707a97e4e79ebb@syzkaller.appspotmail.com
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Tested-by: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: linux-stable <stable@vger.kernel.org> # >= v4.1
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch factors out all non sending parts of can_get_echo_skb() into
a seperate function __can_get_echo_skb(), so that it can be re-used in
an upcoming patch.
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The existing SocketCAN implementation provides alloc_candev() to
allocate a CAN device using a single Tx and Rx queue. This can lead to
priority inversion in case the single Tx queue is already full with low
priority messages and a high priority message needs to be sent while the
bus is fully loaded with medium priority messages.
This problem can be solved by using the existing multi-queue support of
the network subsytem. The commit makes it possible to use multi-queue in
the CAN subsystem in the same way it is used in the Ethernet subsystem
by adding an alloc_candev_mqs() call and accompanying macros. With this
support a CAN device can use multi-queue qdisc (e.g. mqprio) to avoid
the aforementioned priority inversion.
The exisiting functionality of alloc_candev() is the same as before.
CAN devices need to have prioritized multiple hardware queues or are
able to abort waiting for arbitration to make sensible use of
multi-queues.
Signed-off-by: Zhu Yi <yi.zhu5@cn.bosch.com>
Signed-off-by: Mark Jonas <mark.jonas@de.bosch.com>
Reviewed-by: Heiko Schocher <hs@denx.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Various CAN or CAN-FD IP may be able to run at a faster rate than
what the transceiver the CAN node is connected to. This can lead to
unexpected errors. However, CAN transceivers typically have fixed
limitations and provide no means to discover these limitations at
runtime. Therefore, add support for a can-transceiver node that
can be reused by other CAN peripheral drivers to determine for both
CAN and CAN-FD what the max bitrate that can be used. If the user
tries to configure CAN to pass these maximum bitrates it will throw
an error.
Also add support for reading bitrate_max via the netlink interface.
Reviewed-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Franklin S Cooper Jr <fcooper@ti.com>
[nsekhar@ti.com: fix build error with !CONFIG_OF]
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Faiz Abbas <faiz_abbas@ti.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some CAN interfaces only support fixed fixed bitrates. This patch adds a
netlink interface to get the list of the CAN interface's fixed bitrates and
data bitrates.
Inside the driver arrays of supported data- bitrate values are defined.
const u32 drvname_bitrate[] = { 20000, 50000, 100000 };
const u32 drvname_data_bitrate[] = { 200000, 500000, 1000000 };
struct drvname_priv *priv;
priv = netdev_priv(dev);
priv->bitrate_const = drvname_bitrate;
priv->bitrate_const_cnt = ARRAY_SIZE(drvname_bitrate);
priv->data_bitrate_const = drvname_data_bitrate;
priv->data_bitrate_const_cnt = ARRAY_SIZE(drvname_data_bitrate);
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch adds a netlink interface to configure the CAN bus termination of
CAN interfaces.
Inside the driver an array of supported termination values is defined:
const u16 drvname_termination[] = { 60, 120, CAN_TERMINATION_DISABLED };
struct drvname_priv *priv;
priv = netdev_priv(dev);
priv->termination_const = drvname_termination;
priv->termination_const_cnt = ARRAY_SIZE(drvname_termination);
priv->termination = CAN_TERMINATION_DISABLED;
And the funtion to set the value has to be defined:
priv->do_set_termination = drvname_set_termination;
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Reviewed-by: Ramesh Shanmugasundaram <Ramesh.shanmugasundaram@bp.renesas.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
A timer was used to restart after the bus-off state, leading to a
relatively large can_restart() executed in an interrupt context,
which in turn sets up pinctrl. When this happens during system boot,
there is a high probability of grabbing the pinctrl_list_mutex,
which is locked already by the probe() of other device, making the
kernel suspect a deadlock condition [1].
To resolve this issue, the restart_timer is replaced by a delayed
work.
[1] https://github.com/victronenergy/venus/issues/24
Signed-off-by: Sergei Miroshnichenko <sergeimir@emcraft.com>
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>