KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
ARM DEN0022D.b 5.19 "SYSTEM_SUSPEND" describes a PSCI call that allows
software to request that a system be placed in the deepest possible
low-power state. Effectively, software can use this to suspend itself to
RAM.
Unfortunately, there really is no good way to implement a system-wide
PSCI call in KVM. Any precondition checks done in the kernel will need
to be repeated by userspace since there is no good way to protect a
critical section that spans an exit to userspace. SYSTEM_RESET and
SYSTEM_OFF are equally plagued by this issue, although no users have
seemingly cared for the relatively long time these calls have been
supported.
The solution is to just make the whole implementation userspace's
problem. Introduce a new system event, KVM_SYSTEM_EVENT_SUSPEND, that
indicates to userspace a calling vCPU has invoked PSCI SYSTEM_SUSPEND.
Additionally, add a CAP to get buy-in from userspace for this new exit
type.
Only advertise the SYSTEM_SUSPEND PSCI call if userspace has opted in.
If a vCPU calls SYSTEM_SUSPEND, punt straight to userspace. Provide
explicit documentation of userspace's responsibilites for the exit and
point to the PSCI specification to describe the actual PSCI call.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-8-oupton@google.com
Introduce a new MP state, KVM_MP_STATE_SUSPENDED, which indicates a vCPU
is in a suspended state. In the suspended state the vCPU will block
until a wakeup event (pending interrupt) is recognized.
Add a new system event type, KVM_SYSTEM_EVENT_WAKEUP, to indicate to
userspace that KVM has recognized one such wakeup event. It is the
responsibility of userspace to then make the vCPU runnable, or leave it
suspended until the next wakeup event.
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-7-oupton@google.com
Fixes for (relatively) old bugs, to be merged in both the -rc and next
development trees.
The merge reconciles the ABI fixes for KVM_EXIT_SYSTEM_EVENT between
5.18 and commit c24a950ec7 ("KVM, SEV: Add KVM_EXIT_SHUTDOWN metadata
for SEV-ES", 2022-04-13).
When KVM_EXIT_SYSTEM_EVENT was introduced, it included a flags
member that at the time was unused. Unfortunately this extensibility
mechanism has several issues:
- x86 is not writing the member, so it would not be possible to use it
on x86 except for new events
- the member is not aligned to 64 bits, so the definition of the
uAPI struct is incorrect for 32- on 64-bit userspace. This is a
problem for RISC-V, which supports CONFIG_KVM_COMPAT, but fortunately
usage of flags was only introduced in 5.18.
Since padding has to be introduced, place a new field in there
that tells if the flags field is valid. To allow further extensibility,
in fact, change flags to an array of 16 values, and store how many
of the values are valid. The availability of the new ndata field
is tied to a system capability; all architectures are changed to
fill in the field.
To avoid breaking compilation of userspace that was using the flags
field, provide a userspace-only union to overlap flags with data[0].
The new field is placed at the same offset for both 32- and 64-bit
userspace.
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Message-Id: <20220422103013.34832-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At the end of the patch series adding this batch of event channel
acceleration features, finally add the feature bit which advertises
them and document it all.
For SCHEDOP_poll we need to wake a polling vCPU when a given port
is triggered, even when it's masked — and we want to implement that
in the kernel, for efficiency. So we want the kernel to know that it
has sole ownership of event channel delivery. Thus, we allow
userspace to make the 'promise' by setting the corresponding feature
bit in its KVM_XEN_HVM_CONFIG call. As we implement SCHEDOP_poll
bypass later, we will do so only if that promise has been made by
userspace.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-16-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows uses a per-vCPU vector, and it's delivered via the local APIC
basically like an MSI (with associated EOI) unlike the traditional
guest-wide vector which is just magically asserted by Xen (and in the
KVM case by kvm_xen_has_interrupt() / kvm_cpu_get_extint()).
Now that the kernel is able to raise event channel events for itself,
being able to do so for Windows guests is also going to be useful.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-15-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the guest has offloaded the timer virq, handle the following
hypercalls for programming the timer:
VCPUOP_set_singleshot_timer
VCPUOP_stop_singleshot_timer
set_timer_op(timestamp_ns)
The event channel corresponding to the timer virq is then used to inject
events once timer deadlines are met. For now we back the PV timer with
hrtimer.
[ dwmw2: Add save/restore, 32-bit compat mode, immediate delivery,
don't check timer in kvm_vcpu_has_event() ]
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-13-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to intercept hypercalls such as VCPUOP_set_singleshot_timer, we
need to be aware of the Xen CPU numbering.
This looks a lot like the Hyper-V handling of vpidx, for obvious reasons.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Userspace registers a sending @port to either deliver to an @eventfd
or directly back to a local event channel port.
After binding events the guest or host may wish to bind those
events to a particular vcpu. This is usually done for unbound
and and interdomain events. Update requests are handled via the
KVM_XEN_EVTCHN_UPDATE flag.
Unregistered ports are handled by the emulator.
Co-developed-by: Ankur Arora <ankur.a.arora@oracle.com>
Co-developed-By: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-10-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds a KVM_XEN_HVM_EVTCHN_SEND ioctl which allows direct injection
of events given an explicit { vcpu, port, priority } in precisely the
same form that those fields are given in the IRQ routing table.
Userspace is currently able to inject 2-level events purely by setting
the bits in the shared_info and vcpu_info, but FIFO event channels are
harder to deal with; we will need the kernel to take sole ownership of
delivery when we support those.
A patch advertising this feature with a new bit in the KVM_CAP_XEN_HVM
ioctl will be added in a subsequent patch.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-9-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_DISABLE_QUIRKS is irrevocably broken. The capability does not
advertise the set of quirks which may be disabled to userspace, so it is
impossible to predict the behavior of KVM. Worse yet,
KVM_CAP_DISABLE_QUIRKS will tolerate any value for cap->args[0], meaning
it fails to reject attempts to set invalid quirk bits.
The only valid workaround for the quirky quirks API is to add a new CAP.
Actually advertise the set of quirks that can be disabled to userspace
so it can predict KVM's behavior. Reject values for cap->args[0] that
contain invalid bits.
Finally, add documentation for the new capability and describe the
existing quirks.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220301060351.442881-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_CAP_PPC_AIL_MODE_3 to advertise the capability to set the AIL
resource mode to 3 with the H_SET_MODE hypercall. This capability
differs between processor types and KVM types (PR, HV, Nested HV), and
affects guest-visible behaviour.
QEMU will implement a cap-ail-mode-3 to control this behaviour[1], and
use the KVM CAP if available to determine KVM support[2].
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Channel I/O honors storage keys and is performed on absolute memory.
For I/O emulation user space therefore needs to be able to do key
checked accesses.
The vm IOCTL supports read/write accesses, as well as checking
if an access would succeed.
Unlike relying on KVM_S390_GET_SKEYS for key checking would,
the vm IOCTL performs the check in lockstep with the read or write,
by, ultimately, mapping the access to move instructions that
support key protection checking with a supplied key.
Fetch and storage protection override are not applicable to absolute
accesses and so are not applied as they are when using the vcpu memop.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Link: https://lore.kernel.org/r/20220211182215.2730017-7-scgl@linux.ibm.com
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Because KVM_GET_SUPPORTED_CPUID is meant to be passed (by simple-minded
VMMs) to KVM_SET_CPUID2, it cannot include any dynamic xsave states that
have not been enabled. Probing those, for example so that they can be
passed to ARCH_REQ_XCOMP_GUEST_PERM, requires a new ioctl or arch_prctl.
The latter is in fact worse, even though that is what the rest of the
API uses, because it would require supported_xcr0 to be moved from the
KVM module to the kernel just for this use. In addition, the value
would be nonsensical (or an error would have to be returned) until
the KVM module is loaded in.
Therefore, to limit the growth of system ioctls, add a /dev/kvm
variant of KVM_{GET,HAS}_DEVICE_ATTR, and implement it in x86
with just one group (0) and attribute (KVM_X86_XCOMP_GUEST_SUPP).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With KVM_CAP_XSAVE, userspace uses a hardcoded 4KB buffer to get/set
xstate data from/to KVM. This doesn't work when dynamic xfeatures
(e.g. AMX) are exposed to the guest as they require a larger buffer
size.
Introduce a new capability (KVM_CAP_XSAVE2). Userspace VMM gets the
required xstate buffer size via KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2).
KVM_SET_XSAVE is extended to work with both legacy and new capabilities
by doing properly-sized memdup_user() based on the guest fpu container.
KVM_GET_XSAVE is kept for backward-compatible reason. Instead,
KVM_GET_XSAVE2 is introduced under KVM_CAP_XSAVE2 as the preferred
interface for getting xstate buffer (4KB or larger size) from KVM
(Link: https://lkml.org/lkml/2021/12/15/510)
Also, update the api doc with the new KVM_GET_XSAVE2 ioctl.
Signed-off-by: Guang Zeng <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-19-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>