Nowadays, modern kernel subsystems that use callbacks pass the data
structure associated with a given callback as argument to the callback.
The tasklet subsystem remains one which passes an arbitrary unsigned
long to the callback function. This has several problems:
- This keeps an extra field for storing the argument in each tasklet
data structure, it bloats the tasklet_struct structure with a redundant
.data field
- No type checking can be performed on this argument. Instead of
using container_of() like other callback subsystems, it forces callbacks
to do explicit type cast of the unsigned long argument into the required
object type.
- Buffer overflows can overwrite the .func and the .data field, so
an attacker can easily overwrite the function and its first argument
to whatever it wants.
Add a new tasklet initialization API, via DECLARE_TASKLET() and
tasklet_setup(), which will replace the existing ones.
This work is greatly inspired by the timer_struct conversion series,
see commit e99e88a9d2 ("treewide: setup_timer() -> timer_setup()")
To avoid problems with both -Wcast-function-type (which is enabled in
the kernel via -Wextra is several subsystems), and with mismatched
function prototypes when build with Control Flow Integrity enabled,
this adds the "use_callback" member to let the tasklet caller choose
which union member to call through. Once all old API uses are removed,
this and the .data member will be removed as well. (On 64-bit this does
not grow the struct size as the new member fills the hole after atomic_t,
which is also "int" sized.)
Signed-off-by: Romain Perier <romain.perier@gmail.com>
Co-developed-by: Allen Pais <allen.lkml@gmail.com>
Signed-off-by: Allen Pais <allen.lkml@gmail.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
This converts all the existing DECLARE_TASKLET() (and ...DISABLED)
macros with DECLARE_TASKLET_OLD() in preparation for refactoring the
tasklet callback type. All existing DECLARE_TASKLET() users had a "0"
data argument, it has been removed here as well.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
The entry rework moved interrupt entry code from the irqentry to the
noinstr section which made the irqentry section empty.
This breaks boundary checks which rely on the __irqentry_text_start/end
markers to find out whether a function in a stack trace is
interrupt/exception entry code. This affects the function graph tracer and
filter_irq_stacks().
As the IDT entry points are all sequentialy emitted this is rather simple
to unbreak by injecting __irqentry_text_start/end as global labels.
To make this work correctly:
- Remove the IRQENTRY_TEXT section from the x86 linker script
- Define __irqentry so it breaks the build if it's used
- Adjust the entry mirroring in PTI
- Remove the redundant kprobes and unwinder bound checks
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Error injection mechanisms need a half ways safe way to inject interrupts as
invoking generic_handle_irq() or the actual device interrupt handler
directly from e.g. a debugfs write is not guaranteed to be safe.
On x86 generic_handle_irq() is unsafe due to the hardware trainwreck which
is the base of x86 interrupt delivery and affinity management.
Move the irq debugfs injection code into a separate function which can be
used by error injection code as well.
The implementation prevents at least that state is corrupted, but it cannot
close a very tiny race window on x86 which might result in a stale and not
serviced device interrupt under very unlikely circumstances.
This is explicitly for debugging and testing and not for production use or
abuse in random driver code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lkml.kernel.org/r/20200306130623.990928309@linutronix.de
Pull timer updates from Ingo Molnar:
"The main changes in the timer code in this cycle were:
- Clockevent updates:
- timer-of framework cleanups. (Geert Uytterhoeven)
- Use timer-of for the renesas-ostm and the device name to prevent
name collision in case of multiple timers. (Geert Uytterhoeven)
- Check if there is an error after calling of_clk_get in asm9260
(Chuhong Yuan)
- ABI fix: Zero out high order bits of nanoseconds on compat
syscalls. This got broken a year ago, with apparently no side
effects so far.
Since the kernel would use random data otherwise I don't think we'd
have other options but to fix the bug, even if there was a side
effect to applications (Dmitry Safonov)
- Optimize ns_to_timespec64() on 32-bit systems: move away from
div_s64_rem() which can be slow, to div_u64_rem() which is faster
(Arnd Bergmann)
- Annotate KCSAN-reported false positive data races in
hrtimer_is_queued() users by moving timer->state handling over to
the READ_ONCE()/WRITE_ONCE() APIs. This documents these accesses
(Eric Dumazet)
- Misc cleanups and small fixes"
[ I undid the "ABI fix" and updated the comments instead. The reason
there were apparently no side effects is that the fix was a no-op.
The updated comment is to say _why_ it was a no-op. - Linus ]
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Zero the upper 32-bits in __kernel_timespec on 32-bit
time: Rename tsk->real_start_time to ->start_boottime
hrtimer: Remove the comment about not used HRTIMER_SOFTIRQ
time: Fix spelling mistake in comment
time: Optimize ns_to_timespec64()
hrtimer: Annotate lockless access to timer->state
clocksource/drivers/asm9260: Add a check for of_clk_get
clocksource/drivers/renesas-ostm: Use unique device name instead of ostm
clocksource/drivers/renesas-ostm: Convert to timer_of
clocksource/drivers/timer-of: Use unique device name instead of timer
clocksource/drivers/timer-of: Convert last full_name to %pOF
While checking the results of the :c:func: removal, I noticed that there
was no documentation for request_irq(), and request_threaded_irq() was not
mentioned at all. Add a kerneldoc comment for request_irq() and add
request_threaded_irq() to the list of functions.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Introduce a new function, rearm_wake_irq(), allowing a wakeup IRQ
to be armed for systen wakeup detection again without running any
action handlers associated with it after it has been armed for
wakeup detection and triggered.
That is useful for IRQs, like ACPI SCI, that may deliver wakeup
as well as non-wakeup interrupts when armed for systen wakeup
detection. In those cases, it may be possible to determine whether
or not the delivered interrupt is a systen wakeup one without
running the entire action handler (or handlers, if the IRQ is
shared) for the IRQ, and if the interrupt turns out to be a
non-wakeup one, the IRQ can be rearmed with the help of the
new function.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Convert the PM documents to ReST, in order to allow them to
build with Sphinx.
The conversion is actually:
- add blank lines and indentation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Pull irqchip updates from Marc Zyngier
- Core pseudo-NMI handling code
- Allow the default irq domain to be retrieved
- A new interrupt controller for the Loongson LS1X platform
- Affinity support for the SiFive PLIC
- Better support for the iMX irqsteer driver
- NUMA aware memory allocations for GICv3
- A handful of other fixes (i8259, GICv3, PLIC)
The interrupt affinity spreading mechanism supports to spread out
affinities for one or more interrupt sets. A interrupt set contains one or
more interrupts. Each set is mapped to a specific functionality of a
device, e.g. general I/O queues and read I/O queus of multiqueue block
devices.
The number of interrupts per set is defined by the driver. It depends on
the total number of available interrupts for the device, which is
determined by the PCI capabilites and the availability of underlying CPU
resources, and the number of queues which the device provides and the
driver wants to instantiate.
The driver passes initial configuration for the interrupt allocation via a
pointer to struct irq_affinity.
Right now the allocation mechanism is complex as it requires to have a loop
in the driver to determine the maximum number of interrupts which are
provided by the PCI capabilities and the underlying CPU resources. This
loop would have to be replicated in every driver which wants to utilize
this mechanism. That's unwanted code duplication and error prone.
In order to move this into generic facilities it is required to have a
mechanism, which allows the recalculation of the interrupt sets and their
size, in the core code. As the core code does not have any knowledge about the
underlying device, a driver specific callback is required in struct
irq_affinity, which can be invoked by the core code. The callback gets the
number of available interupts as an argument, so the driver can calculate the
corresponding number and size of interrupt sets.
At the moment the struct irq_affinity pointer which is handed in from the
driver and passed through to several core functions is marked 'const', but for
the callback to be able to modify the data in the struct it's required to
remove the 'const' qualifier.
Add the optional callback to struct irq_affinity, which allows drivers to
recalculate the number and size of interrupt sets and remove the 'const'
qualifier.
For simple invocations, which do not supply a callback, a default callback
is installed, which just sets nr_sets to 1 and transfers the number of
spreadable vectors to the set_size array at index 0.
This is for now guarded by a check for nr_sets != 0 to keep the NVME driver
working until it is converted to the callback mechanism.
To make sure that the driver configuration is correct under all circumstances
the callback is invoked even when there are no interrupts for queues left,
i.e. the pre/post requirements already exhaust the numner of available
interrupts.
At the PCI layer irq_create_affinity_masks() has to be invoked even for the
case where the legacy interrupt is used. That ensures that the callback is
invoked and the device driver can adjust to that situation.
[ tglx: Fixed the simple case (no sets required). Moved the sanity check
for nr_sets after the invocation of the callback so it catches
broken drivers. Fixed the kernel doc comments for struct
irq_affinity and de-'This patch'-ed the changelog ]
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bjorn Helgaas <helgaas@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: linux-nvme@lists.infradead.org
Cc: linux-pci@vger.kernel.org
Cc: Keith Busch <keith.busch@intel.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Shivasharan Srikanteshwara <shivasharan.srikanteshwara@broadcom.com>
Link: https://lkml.kernel.org/r/20190216172228.512444498@linutronix.de
The interrupt affinity spreading mechanism supports to spread out
affinities for one or more interrupt sets. A interrupt set contains one
or more interrupts. Each set is mapped to a specific functionality of a
device, e.g. general I/O queues and read I/O queus of multiqueue block
devices.
The number of interrupts per set is defined by the driver. It depends on
the total number of available interrupts for the device, which is
determined by the PCI capabilites and the availability of underlying CPU
resources, and the number of queues which the device provides and the
driver wants to instantiate.
The driver passes initial configuration for the interrupt allocation via
a pointer to struct irq_affinity.
Right now the allocation mechanism is complex as it requires to have a
loop in the driver to determine the maximum number of interrupts which
are provided by the PCI capabilities and the underlying CPU resources.
This loop would have to be replicated in every driver which wants to
utilize this mechanism. That's unwanted code duplication and error
prone.
In order to move this into generic facilities it is required to have a
mechanism, which allows the recalculation of the interrupt sets and
their size, in the core code. As the core code does not have any
knowledge about the underlying device, a driver specific callback will
be added to struct affinity_desc, which will be invoked by the core
code. The callback will get the number of available interupts as an
argument, so the driver can calculate the corresponding number and size
of interrupt sets.
To support this, two modifications for the handling of struct irq_affinity
are required:
1) The (optional) interrupt sets size information is contained in a
separate array of integers and struct irq_affinity contains a
pointer to it.
This is cumbersome and as the maximum number of interrupt sets is small,
there is no reason to have separate storage. Moving the size array into
struct affinity_desc avoids indirections and makes the code simpler.
2) At the moment the struct irq_affinity pointer which is handed in from
the driver and passed through to several core functions is marked
'const'.
With the upcoming callback to recalculate the number and size of
interrupt sets, it's necessary to remove the 'const'
qualifier. Otherwise the callback would not be able to update the data.
Implement #1 and store the interrupt sets size in 'struct irq_affinity'.
No functional change.
[ tglx: Fixed the memcpy() size so it won't copy beyond the size of the
source. Fixed the kernel doc comments for struct irq_affinity and
de-'This patch'-ed the changelog ]
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Bjorn Helgaas <helgaas@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: linux-nvme@lists.infradead.org
Cc: linux-pci@vger.kernel.org
Cc: Keith Busch <keith.busch@intel.com>
Cc: Sumit Saxena <sumit.saxena@broadcom.com>
Cc: Kashyap Desai <kashyap.desai@broadcom.com>
Cc: Shivasharan Srikanteshwara <shivasharan.srikanteshwara@broadcom.com>
Link: https://lkml.kernel.org/r/20190216172228.423723127@linutronix.de
Add support for percpu_devid interrupts treated as NMIs.
Percpu_devid NMIs need to be setup/torn down on each CPU they target.
The same restrictions as for global NMIs still apply for percpu_devid NMIs.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add functionality to allocate interrupt lines that will deliver IRQs
as Non-Maskable Interrupts. These allocations are only successful if
the irqchip provides the necessary support and allows NMI delivery for the
interrupt line.
Interrupt lines allocated for NMI delivery must be enabled/disabled through
enable_nmi/disable_nmi_nosync to keep their state consistent.
To treat a PERCPU IRQ as NMI, the interrupt must not be shared nor threaded,
the irqchip directly managing the IRQ must be the root irqchip and the
irqchip cannot be behind a slow bus.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
A recent commit added a new field but did not update the kerneldoc comment,
leading to this build warning:
./include/linux/interrupt.h:268: warning: Function parameter or member 'is_managed' not described in 'irq_affinity_desc'
Add the missing information, making the docs build 0.001% quieter.
Fixes: c410abbbac ("genirq/affinity: Add is_managed to struct irq_affinity_desc")
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dou Liyang <douliyangs@gmail.com>
Link: https://lkml.kernel.org/r/20190108170432.59bae8a6@lwn.net
Devices which use managed interrupts usually have two classes of
interrupts:
- Interrupts for multiple device queues
- Interrupts for general device management
Currently both classes are treated the same way, i.e. as managed
interrupts. The general interrupts get the default affinity mask assigned
while the device queue interrupts are spread out over the possible CPUs.
Treating the general interrupts as managed is both a limitation and under
certain circumstances a bug. Assume the following situation:
default_irq_affinity = 4..7
So if CPUs 4-7 are offlined, then the core code will shut down the device
management interrupts because the last CPU in their affinity mask went
offline.
It's also a limitation because it's desired to allow manual placement of
the general device interrupts for various reasons. If they are marked
managed then the interrupt affinity setting from both user and kernel space
is disabled. That limitation was reported by Kashyap and Sumit.
Expand struct irq_affinity_desc with a new bit 'is_managed' which is set
for truly managed interrupts (queue interrupts) and cleared for the general
device interrupts.
[ tglx: Simplify code and massage changelog ]
Reported-by: Kashyap Desai <kashyap.desai@broadcom.com>
Reported-by: Sumit Saxena <sumit.saxena@broadcom.com>
Signed-off-by: Dou Liyang <douliyangs@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-pci@vger.kernel.org
Cc: shivasharan.srikanteshwara@broadcom.com
Cc: ming.lei@redhat.com
Cc: hch@lst.de
Cc: bhelgaas@google.com
Cc: douliyang1@huawei.com
Link: https://lkml.kernel.org/r/20181204155122.6327-3-douliyangs@gmail.com
The interrupt affinity management uses straight cpumask pointers to convey
the automatically assigned affinity masks for managed interrupts. The core
interrupt descriptor allocation also decides based on the pointer being non
NULL whether an interrupt is managed or not.
Devices which use managed interrupts usually have two classes of
interrupts:
- Interrupts for multiple device queues
- Interrupts for general device management
Currently both classes are treated the same way, i.e. as managed
interrupts. The general interrupts get the default affinity mask assigned
while the device queue interrupts are spread out over the possible CPUs.
Treating the general interrupts as managed is both a limitation and under
certain circumstances a bug. Assume the following situation:
default_irq_affinity = 4..7
So if CPUs 4-7 are offlined, then the core code will shut down the device
management interrupts because the last CPU in their affinity mask went
offline.
It's also a limitation because it's desired to allow manual placement of
the general device interrupts for various reasons. If they are marked
managed then the interrupt affinity setting from both user and kernel space
is disabled.
To remedy that situation it's required to convey more information than the
cpumasks through various interfaces related to interrupt descriptor
allocation.
Instead of adding yet another argument, create a new data structure
'irq_affinity_desc' which for now just contains the cpumask. This struct
can be expanded to convey auxilliary information in the next step.
No functional change, just preparatory work.
[ tglx: Simplified logic and clarified changelog ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Dou Liyang <douliyangs@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-pci@vger.kernel.org
Cc: kashyap.desai@broadcom.com
Cc: shivasharan.srikanteshwara@broadcom.com
Cc: sumit.saxena@broadcom.com
Cc: ming.lei@redhat.com
Cc: hch@lst.de
Cc: douliyang1@huawei.com
Link: https://lkml.kernel.org/r/20181204155122.6327-2-douliyangs@gmail.com