commit 10c5357874 upstream.
Currently rcu_preempt_deferred_qs_irqrestore() releases rnp->boost_mtx
before reporting the expedited quiescent state. Under heavy real-time
load, this can result in this function being preempted before the
quiescent state is reported, which can in turn prevent the expedited grace
period from completing. Tim Murray reports that the resulting expedited
grace periods can take hundreds of milliseconds and even more than one
second, when they should normally complete in less than a millisecond.
This was fine given that there were no particular response-time
constraints for synchronize_rcu_expedited(), as it was designed
for throughput rather than latency. However, some users now need
sub-100-millisecond response-time constratints.
This patch therefore follows Neeraj's suggestion (seconded by Tim and
by Uladzislau Rezki) of simply reversing the two operations.
Reported-by: Tim Murray <timmurray@google.com>
Reported-by: Joel Fernandes <joelaf@google.com>
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Tim Murray <timmurray@google.com>
Cc: Todd Kjos <tkjos@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b2fcf21020 upstream.
This sequence of events can lead to a failure to requeue a CPU's
->nocb_timer:
1. There are no callbacks queued for any CPU covered by CPU 0-2's
->nocb_gp_kthread. Note that ->nocb_gp_kthread is associated
with CPU 0.
2. CPU 1 enqueues its first callback with interrupts disabled, and
thus must defer awakening its ->nocb_gp_kthread. It therefore
queues its rcu_data structure's ->nocb_timer. At this point,
CPU 1's rdp->nocb_defer_wakeup is RCU_NOCB_WAKE.
3. CPU 2, which shares the same ->nocb_gp_kthread, also enqueues a
callback, but with interrupts enabled, allowing it to directly
awaken the ->nocb_gp_kthread.
4. The newly awakened ->nocb_gp_kthread associates both CPU 1's
and CPU 2's callbacks with a future grace period and arranges
for that grace period to be started.
5. This ->nocb_gp_kthread goes to sleep waiting for the end of this
future grace period.
6. This grace period elapses before the CPU 1's timer fires.
This is normally improbably given that the timer is set for only
one jiffy, but timers can be delayed. Besides, it is possible
that kernel was built with CONFIG_RCU_STRICT_GRACE_PERIOD=y.
7. The grace period ends, so rcu_gp_kthread awakens the
->nocb_gp_kthread, which in turn awakens both CPU 1's and
CPU 2's ->nocb_cb_kthread. Then ->nocb_gb_kthread sleeps
waiting for more newly queued callbacks.
8. CPU 1's ->nocb_cb_kthread invokes its callback, then sleeps
waiting for more invocable callbacks.
9. Note that neither kthread updated any ->nocb_timer state,
so CPU 1's ->nocb_defer_wakeup is still set to RCU_NOCB_WAKE.
10. CPU 1 enqueues its second callback, this time with interrupts
enabled so it can wake directly ->nocb_gp_kthread.
It does so with calling wake_nocb_gp() which also cancels the
pending timer that got queued in step 2. But that doesn't reset
CPU 1's ->nocb_defer_wakeup which is still set to RCU_NOCB_WAKE.
So CPU 1's ->nocb_defer_wakeup and its ->nocb_timer are now
desynchronized.
11. ->nocb_gp_kthread associates the callback queued in 10 with a new
grace period, arranges for that grace period to start and sleeps
waiting for it to complete.
12. The grace period ends, rcu_gp_kthread awakens ->nocb_gp_kthread,
which in turn wakes up CPU 1's ->nocb_cb_kthread which then
invokes the callback queued in 10.
13. CPU 1 enqueues its third callback, this time with interrupts
disabled so it must queue a timer for a deferred wakeup. However
the value of its ->nocb_defer_wakeup is RCU_NOCB_WAKE which
incorrectly indicates that a timer is already queued. Instead,
CPU 1's ->nocb_timer was cancelled in 10. CPU 1 therefore fails
to queue the ->nocb_timer.
14. CPU 1 has its pending callback and it may go unnoticed until
some other CPU ever wakes up ->nocb_gp_kthread or CPU 1 ever
calls an explicit deferred wakeup, for example, during idle entry.
This commit fixes this bug by resetting rdp->nocb_defer_wakeup everytime
we delete the ->nocb_timer.
It is quite possible that there is a similar scenario involving
->nocb_bypass_timer and ->nocb_defer_wakeup. However, despite some
effort from several people, a failure scenario has not yet been located.
However, that by no means guarantees that no such scenario exists.
Finding a failure scenario is left as an exercise for the reader, and the
"Fixes:" tag below relates to ->nocb_bypass_timer instead of ->nocb_timer.
Fixes: d1b222c6be (rcu/nocb: Add bypass callback queueing)
Cc: <stable@vger.kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bfb3aa735f upstream.
An outgoing CPU is marked offline in a stop-machine handler and most
of that CPU's services stop at that point, including IRQ work queues.
However, that CPU must take another pass through the scheduler and through
a number of CPU-hotplug notifiers, many of which contain RCU readers.
In the past, these readers were not a problem because the outgoing CPU
has interrupts disabled, so that rcu_read_unlock_special() would not
be invoked, and thus RCU would never attempt to queue IRQ work on the
outgoing CPU.
This changed with the advent of the CONFIG_RCU_STRICT_GRACE_PERIOD
Kconfig option, in which rcu_read_unlock_special() is invoked upon exit
from almost all RCU read-side critical sections. Worse yet, because
interrupts are disabled, rcu_read_unlock_special() cannot immediately
report a quiescent state and will therefore attempt to defer this
reporting, for example, by queueing IRQ work. Which fails with a splat
because the CPU is already marked as being offline.
But it turns out that there is no need to report this quiescent state
because rcu_report_dead() will do this job shortly after the outgoing
CPU makes its final dive into the idle loop. This commit therefore
makes rcu_read_unlock_special() refrain from queuing IRQ work onto
outgoing CPUs.
Fixes: 44bad5b3cc ("rcu: Do full report for .need_qs for strict GPs")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 614ddad17f upstream.
Currently, rcu_advance_cbs_nowake() checks that a grace period is in
progress, however, that grace period could end just after the check.
This commit rechecks that a grace period is still in progress while
holding the rcu_node structure's lock. The grace period cannot end while
the current CPU's rcu_node structure's ->lock is held, thus avoiding
false positives from the WARN_ON_ONCE().
As Daniel Vacek noted, it is not necessary for the rcu_node structure
to have a CPU that has not yet passed through its quiescent state.
Tested-by: Guillaume Morin <guillaume@morinfr.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 81f6d49cce ]
Expedited RCU grace periods invoke sync_rcu_exp_select_node_cpus(), which
takes two passes over the leaf rcu_node structure's CPUs. The first
pass gathers up the current CPU and CPUs that are in dynticks idle mode.
The workqueue will report a quiescent state on their behalf later.
The second pass sends IPIs to the rest of the CPUs, but excludes the
current CPU, incorrectly assuming it has been included in the first
pass's list of CPUs.
Unfortunately the current CPU may have changed between the first and
second pass, due to the fact that the various rcu_node structures'
->lock fields have been dropped, thus momentarily enabling preemption.
This means that if the second pass's CPU was not on the first pass's
list, it will be ignored completely. There will be no IPI sent to
it, and there will be no reporting of quiescent states on its behalf.
Unfortunately, the expedited grace period will nevertheless be waiting
for that CPU to report a quiescent state, but with that CPU having no
reason to believe that such a report is needed.
The result will be an expedited grace period stall.
Fix this by no longer excluding the current CPU from consideration during
the second pass.
Fixes: b9ad4d6ed1 ("rcu: Avoid self-IPI in sync_rcu_exp_select_node_cpus()")
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7663ad9a5d ]
RCU managed to grow a few noinstr violations:
vmlinux.o: warning: objtool: rcu_dynticks_eqs_enter()+0x0: call to rcu_dynticks_task_trace_enter() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_exit()+0xe: call to rcu_dynticks_task_trace_exit() leaves .noinstr.text section
Fix them by adding __always_inline to the relevant trivial functions.
Also replace the noinstr with __always_inline for the existing
rcu_dynticks_task_*() functions since noinstr would force noinline
them, even when empty, which seems silly.
Fixes: 7d0c9c50c5 ("rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f0b2b2df54 ]
The sync_sched_exp_online_cleanup() checks to see if RCU needs
an expedited quiescent state from the incoming CPU, sending it
an IPI if so. Before sending IPI, it checks whether expedited
qs need has been already requested for the incoming CPU, by
checking rcu_data.cpu_no_qs.b.exp for the current cpu, on which
sync_sched_exp_online_cleanup() is running. This works for the
case where incoming CPU is same as self. However, for the case
where incoming CPU is different from self, expedited request
won't get marked, which can potentially delay reporting of
expedited quiescent state for the incoming CPU.
Fixes: e015a34112 ("rcu: Avoid self-IPI in sync_sched_exp_online_cleanup()")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0db7c32ad3 ]
Early in debugging, it made some sense to differentiate the first
iteration from subsequent iterations, but now this just causes confusion.
This commit therefore moves the "set_tasks_gp_state(rtp, RTGS_WAIT_CBS)"
statement to the beginning of the "for" loop in rcu_tasks_kthread().
Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 71921a9606 ]
rcutorture is generating some nesting scenarios that are not compatible on PREEMPT_RT.
For example:
preempt_disable();
rcu_read_lock_bh();
preempt_enable();
rcu_read_unlock_bh();
The problem here is that on PREEMPT_RT the bottom halves have to be
disabled and enabled in preemptible context.
Reorder locking: start with BH locking and continue with then with
disabling preemption or interrupts. In the unlocking do it reverse by
first enabling interrupts and preemption and BH at the very end.
Ensure that on PREEMPT_RT BH locking remains unchanged if in
non-preemptible context.
Link: https://lkml.kernel.org/r/20190911165729.11178-6-swood@redhat.com
Link: https://lkml.kernel.org/r/20210819182035.GF4126399@paulmck-ThinkPad-P17-Gen-1
Signed-off-by: Scott Wood <swood@redhat.com>
[bigeasy: Drop ATOM_BH, make it only about changing BH in atomic
context. Allow enabling RCU in IRQ-off section. Reword commit message.]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fed31a4dd3 ]
This commit fixes several typos where CONFIG_TASKS_RCU_TRACE should
instead be CONFIG_TASKS_TRACE_RCU. Among other things, these typos
could cause CONFIG_TASKS_TRACE_RCU_READ_MB=y kernels to suffer from
memory-ordering bugs that could result in false-positive quiescent
states and too-short grace periods.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dc87740c8a ]
If rcu_print_task_stall() is invoked on an rcu_node structure that does
not contain any tasks blocking the current grace period, it takes an
early exit that fails to release that rcu_node structure's lock. This
results in a self-deadlock, which is detected by lockdep.
To reproduce this bug:
tools/testing/selftests/rcutorture/bin/kvm.sh --allcpus --duration 3 --trust-make --configs "TREE03" --kconfig "CONFIG_PROVE_LOCKING=y" --bootargs "rcutorture.stall_cpu=30 rcutorture.stall_cpu_block=1 rcutorture.fwd_progress=0 rcutorture.test_boost=0"
This will also result in other complaints, including RCU's scheduler
hook complaining about blocking rather than preemption and an rcutorture
writer stall.
Only a partial RCU CPU stall warning message will be printed because of
the self-deadlock.
This commit therefore releases the lock on the rcu_print_task_stall()
function's early exit path.
Fixes: c583bcb8f5 ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a649d25dcc ]
This commit adds a number of lockdep_assert_irqs_disabled() calls
to rcu_sched_clock_irq() and a number of the functions that it calls.
The point of this is to help track down a situation where lockdep appears
to be insisting that interrupts are enabled within these functions, which
should only ever be invoked from the scheduling-clock interrupt handler.
Link: https://lore.kernel.org/lkml/20201111133813.GA81547@elver.google.com/
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e6a901a44f ]
The for loop in rcu_print_task_stall() always omits ts[0], which points
to the first task blocking the stalled grace period. This in turn fails
to count this first task, which means that ndetected will be equal to
zero when all CPUs have passed through their quiescent states and only
one task is blocking the stalled grace period. This zero value for
ndetected will in turn result in an incorrect "All QSes seen" message:
rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
rcu: Tasks blocked on level-1 rcu_node (CPUs 12-23):
(detected by 15, t=6504 jiffies, g=164777, q=9011209)
rcu: All QSes seen, last rcu_preempt kthread activity 1 (4295252379-4295252378), jiffies_till_next_fqs=1, root ->qsmask 0x2
BUG: sleeping function called from invalid context at include/linux/uaccess.h:156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 70613, name: msgstress04
INFO: lockdep is turned off.
Preemption disabled at:
[<ffff8000104031a4>] create_object.isra.0+0x204/0x4b0
CPU: 15 PID: 70613 Comm: msgstress04 Kdump: loaded Not tainted
5.12.2-yoctodev-standard #1
Hardware name: Marvell OcteonTX CN96XX board (DT)
Call trace:
dump_backtrace+0x0/0x2cc
show_stack+0x24/0x30
dump_stack+0x110/0x188
___might_sleep+0x214/0x2d0
__might_sleep+0x7c/0xe0
This commit therefore fixes the loop to include ts[0].
Fixes: c583bcb8f5 ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ccfc9dd691 ]
The soft watchdog timer function checks if a virtual machine
was suspended and hence what looks like a lockup in fact
is a false positive.
This is what kvm_check_and_clear_guest_paused() does: it
tests guest PVCLOCK_GUEST_STOPPED (which is set by the host)
and if it's set then we need to touch all watchdogs and bail
out.
Watchdog timer function runs from IRQ, so PVCLOCK_GUEST_STOPPED
check works fine.
There is, however, one more watchdog that runs from IRQ, so
watchdog timer fn races with it, and that watchdog is not aware
of PVCLOCK_GUEST_STOPPED - RCU stall detector.
apic_timer_interrupt()
smp_apic_timer_interrupt()
hrtimer_interrupt()
__hrtimer_run_queues()
tick_sched_timer()
tick_sched_handle()
update_process_times()
rcu_sched_clock_irq()
This triggers RCU stalls on our devices during VM resume.
If tick_sched_handle()->rcu_sched_clock_irq() runs on a VCPU
before watchdog_timer_fn()->kvm_check_and_clear_guest_paused()
then there is nothing on this VCPU that touches watchdogs and
RCU reads stale gp stall timestamp and new jiffies value, which
makes it think that RCU has stalled.
Make RCU stall watchdog aware of PVCLOCK_GUEST_STOPPED and
don't report RCU stalls when we resume the VM.
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8b5bd67cf6 upstream.
There is a need for a polling interface for SRCU grace
periods, so this commit supplies get_state_synchronize_srcu(),
start_poll_synchronize_srcu(), and poll_state_synchronize_srcu() for this
purpose. The first can be used if future grace periods are inevitable
(perhaps due to a later call_srcu() invocation), the second if future
grace periods might not otherwise happen, and the third to check if a
grace period has elapsed since the corresponding call to either of the
first two.
As with get_state_synchronize_rcu() and cond_synchronize_rcu(),
the return value from either get_state_synchronize_srcu() or
start_poll_synchronize_srcu() must be passed in to a later call to
poll_state_synchronize_srcu().
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
[ paulmck: Add EXPORT_SYMBOL_GPL() per kernel test robot feedback. ]
[ paulmck: Apply feedback from Neeraj Upadhyay. ]
Link: https://lore.kernel.org/lkml/20201117004017.GA7444@paulmck-ThinkPad-P72/
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 74612a07b8 upstream.
There is a need for a polling interface for SRCU grace periods. This
polling needs to distinguish between an SRCU instance being idle on the
one hand or in the middle of a grace period on the other. This commit
therefore converts the Tiny SRCU srcu_struct structure's srcu_idx from
a defacto boolean to a free-running counter, using the bottom bit to
indicate that a grace period is in progress. The second-from-bottom
bit is thus used as the index returned by srcu_read_lock().
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
[ paulmck: Fix ->srcu_lock_nesting[] indexing per Neeraj Upadhyay. ]
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1a893c711a upstream.
There is a need for a polling interface for SRCU grace periods.
This polling needs to initiate an SRCU grace period without
having to queue (and manage) a callback. This commit therefore
splits the Tiny SRCU call_srcu() function into callback-queuing and
start-grace-period portions, with the latter in a new function named
srcu_gp_start_if_needed().
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5358c9fa54 upstream.
There is a need for a polling interface for SRCU grace
periods, so this commit supplies get_state_synchronize_srcu(),
start_poll_synchronize_srcu(), and poll_state_synchronize_srcu() for this
purpose. The first can be used if future grace periods are inevitable
(perhaps due to a later call_srcu() invocation), the second if future
grace periods might not otherwise happen, and the third to check if a
grace period has elapsed since the corresponding call to either of the
first two.
As with get_state_synchronize_rcu() and cond_synchronize_rcu(),
the return value from either get_state_synchronize_srcu() or
start_poll_synchronize_srcu() must be passed in to a later call to
poll_state_synchronize_srcu().
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
[ paulmck: Add EXPORT_SYMBOL_GPL() per kernel test robot feedback. ]
[ paulmck: Apply feedback from Neeraj Upadhyay. ]
Link: https://lore.kernel.org/lkml/20201117004017.GA7444@paulmck-ThinkPad-P72/
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 29d2bb94a8 upstream.
There is a need for a polling interface for SRCU grace periods.
This polling needs to initiate an SRCU grace period without having
to queue (and manage) a callback. This commit therefore splits the
Tree SRCU __call_srcu() function into callback-initialization and
queuing/start-grace-period portions, with the latter in a new function
named srcu_gp_start_if_needed(). This function may be passed a NULL
callback pointer, in which case it will refrain from queuing anything.
Why have the new function mess with queuing? Locking considerations,
of course!
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a9ab9cce93 ]
Invoking trc_del_holdout() from within trc_wait_for_one_reader() is
only a performance optimization because the RCU Tasks Trace grace-period
kthread will eventually do this within check_all_holdout_tasks_trace().
But it is not a particularly important performance optimization because
it only applies to the grace-period kthread, of which there is but one.
This commit therefore removes this invocation of trc_del_holdout() in
favor of the one in check_all_holdout_tasks_trace() in the grace-period
kthread.
Reported-by: "Xu, Yanfei" <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1d10bf55d8 ]
As Yanfei pointed out, although invoking trc_del_holdout() is safe
from the viewpoint of the integrity of the holdout list itself,
the put_task_struct() invoked by trc_del_holdout() can result in
use-after-free errors due to later accesses to this task_struct structure
by the RCU Tasks Trace grace-period kthread.
This commit therefore removes this call to trc_del_holdout() from
trc_inspect_reader() in favor of the grace-period thread's existing call
to trc_del_holdout(), thus eliminating that particular class of
use-after-free errors.
Reported-by: "Xu, Yanfei" <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3066820034 ]
If another lockdep report runs concurrently with an RCU lockdep report
from RCU_LOCKDEP_WARN(), the following sequence of events can occur:
1. debug_lockdep_rcu_enabled() sees that lockdep is enabled
when called from (say) synchronize_rcu().
2. Lockdep is disabled by a concurrent lockdep report.
3. debug_lockdep_rcu_enabled() evaluates its lockdep-expression
argument, for example, lock_is_held(&rcu_bh_lock_map).
4. Because lockdep is now disabled, lock_is_held() plays it safe and
returns the constant 1.
5. But in this case, the constant 1 is not safe, because invoking
synchronize_rcu() under rcu_read_lock_bh() is disallowed.
6. debug_lockdep_rcu_enabled() wrongly invokes lockdep_rcu_suspicious(),
resulting in a false-positive splat.
This commit therefore changes RCU_LOCKDEP_WARN() to check
debug_lockdep_rcu_enabled() after checking the lockdep expression,
so that any "safe" returns from lock_is_held() are rejected by
debug_lockdep_rcu_enabled(). This requires memory ordering, which is
supplied by READ_ONCE(debug_locks). The resulting volatile accesses
prevent the compiler from reordering and the fact that only one variable
is being accessed prevents the underlying hardware from reordering.
The combination works for IA64, which can reorder reads to the same
location, but this is defeated by the volatile accesses, which compile
to load instructions that provide ordering.
Reported-by: syzbot+dde0cc33951735441301@syzkaller.appspotmail.com
Reported-by: Matthew Wilcox <willy@infradead.org>
Reported-by: syzbot+88e4f02896967fe1ab0d@syzkaller.appspotmail.com
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>