commit 1756d7994a upstream.
cgroup process migration permission checks are performed at write time as
whether a given operation is allowed or not is dependent on the content of
the write - the PID. This currently uses current's credentials which is a
potential security weakness as it may allow scenarios where a less
privileged process tricks a more privileged one into writing into a fd that
it created.
This patch makes both cgroup2 and cgroup1 process migration interfaces to
use the credentials saved at the time of open (file->f_cred) instead of
current's.
Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Fixes: 187fe84067 ("cgroup: require write perm on common ancestor when moving processes on the default hierarchy")
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
[OP: apply original __cgroup_procs_write() changes to cgroup_threads_write()
and cgroup_procs_write(), as the refactoring commit da70862efe ("cgroup:
cgroup.{procs,threads} factor out common parts") is not present in 5.10-stable]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e574576416 upstream.
cgroup process migration permission checks are performed at write time as
whether a given operation is allowed or not is dependent on the content of
the write - the PID. This currently uses current's cgroup namespace which is
a potential security weakness as it may allow scenarios where a less
privileged process tricks a more privileged one into writing into a fd that
it created.
This patch makes cgroup remember the cgroup namespace at the time of open
and uses it for migration permission checks instad of current's. Note that
this only applies to cgroup2 as cgroup1 doesn't have namespace support.
This also fixes a use-after-free bug on cgroupns reported in
https://lore.kernel.org/r/00000000000048c15c05d0083397@google.com
Note that backporting this fix also requires the preceding patch.
Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Reported-by: syzbot+50f5cf33a284ce738b62@syzkaller.appspotmail.com
Link: https://lore.kernel.org/r/00000000000048c15c05d0083397@google.com
Fixes: 5136f6365c ("cgroup: implement "nsdelegate" mount option")
Signed-off-by: Tejun Heo <tj@kernel.org>
[mkoutny: v5.10: duplicate ns check in procs/threads write handler, adjust context]
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0d2b5955b3 upstream.
of->priv is currently used by each interface file implementation to store
private information. This patch collects the current two private data usages
into struct cgroup_file_ctx which is allocated and freed by the common path.
This allows generic private data which applies to multiple files, which will
be used to in the following patch.
Note that cgroup_procs iterator is now embedded as procs.iter in the new
cgroup_file_ctx so that it doesn't need to be allocated and freed
separately.
v2: union dropped from cgroup_file_ctx and the procs iterator is embedded in
cgroup_file_ctx as suggested by Linus.
v3: Michal pointed out that cgroup1's procs pidlist uses of->priv too.
Converted. Didn't change to embedded allocation as cgroup1 pidlists get
stored for caching.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
[mkoutny: v5.10: modify cgroup.pressure handlers, adjust context]
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 05c7b7a92c upstream.
As previously discussed(https://lkml.org/lkml/2022/1/20/51),
cpuset_attach() is affected with similar cpu hotplug race,
as follow scenario:
cpuset_attach() cpu hotplug
--------------------------- ----------------------
down_write(cpuset_rwsem)
guarantee_online_cpus() // (load cpus_attach)
sched_cpu_deactivate
set_cpu_active()
// will change cpu_active_mask
set_cpus_allowed_ptr(cpus_attach)
__set_cpus_allowed_ptr_locked()
// (if the intersection of cpus_attach and
cpu_active_mask is empty, will return -EINVAL)
up_write(cpuset_rwsem)
To avoid races such as described above, protect cpuset_attach() call
with cpu_hotplug_lock.
Fixes: be367d0992 ("cgroups: let ss->can_attach and ss->attach do whole threadgroups at a time")
Cc: stable@vger.kernel.org # v2.6.32+
Reported-by: Zhao Gongyi <zhaogongyi@huawei.com>
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Acked-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2bdfd2825c upstream.
It was found that a "suspicious RCU usage" lockdep warning was issued
with the rcu_read_lock() call in update_sibling_cpumasks(). It is
because the update_cpumasks_hier() function may sleep. So we have
to release the RCU lock, call update_cpumasks_hier() and reacquire
it afterward.
Also add a percpu_rwsem_assert_held() in update_sibling_cpumasks()
instead of stating that in the comment.
Fixes: 4716909cc5 ("cpuset: Track cpusets that use parent's effective_cpus")
Signed-off-by: Waiman Long <longman@redhat.com>
Tested-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c80d401c52 upstream.
subparts_cpus should be limited as a subset of cpus_allowed, but it is
updated wrongly by using cpumask_andnot(). Use cpumask_and() instead to
fix it.
Fixes: ee8dde0cd2 ("cpuset: Add new v2 cpuset.sched.partition flag")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 24f6008564 upstream.
The cgroup release_agent is called with call_usermodehelper. The function
call_usermodehelper starts the release_agent with a full set fo capabilities.
Therefore require capabilities when setting the release_agaent.
Reported-by: Tabitha Sable <tabitha.c.sable@gmail.com>
Tested-by: Tabitha Sable <tabitha.c.sable@gmail.com>
Fixes: 81a6a5cdd2 ("Task Control Groups: automatic userspace notification of idle cgroups")
Cc: stable@vger.kernel.org # v2.6.24+
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 81c49d39ae ]
In account_guest_time in kernel/sched/cputime.c guest time is
attributed to both CPUTIME_NICE and CPUTIME_USER in addition to
CPUTIME_GUEST_NICE and CPUTIME_GUEST respectively. Therefore, adding
both to calculate usage results in double counting any guest time at
the rootcg.
Fixes: 936f2a70f2 ("cgroup: add cpu.stat file to root cgroup")
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7ee285395b ]
It was found that the following warning was displayed when remounting
controllers from cgroup v2 to v1:
[ 8042.997778] WARNING: CPU: 88 PID: 80682 at kernel/cgroup/cgroup.c:3130 cgroup_apply_control_disable+0x158/0x190
:
[ 8043.091109] RIP: 0010:cgroup_apply_control_disable+0x158/0x190
[ 8043.096946] Code: ff f6 45 54 01 74 39 48 8d 7d 10 48 c7 c6 e0 46 5a a4 e8 7b 67 33 00 e9 41 ff ff ff 49 8b 84 24 e8 01 00 00 0f b7 40 08 eb 95 <0f> 0b e9 5f ff ff ff 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3
[ 8043.115692] RSP: 0018:ffffba8a47c23d28 EFLAGS: 00010202
[ 8043.120916] RAX: 0000000000000036 RBX: ffffffffa624ce40 RCX: 000000000000181a
[ 8043.128047] RDX: ffffffffa63c43e0 RSI: ffffffffa63c43e0 RDI: ffff9d7284ee1000
[ 8043.135180] RBP: ffff9d72874c5800 R08: ffffffffa624b090 R09: 0000000000000004
[ 8043.142314] R10: ffffffffa624b080 R11: 0000000000002000 R12: ffff9d7284ee1000
[ 8043.149447] R13: ffff9d7284ee1000 R14: ffffffffa624ce70 R15: ffffffffa6269e20
[ 8043.156576] FS: 00007f7747cff740(0000) GS:ffff9d7a5fc00000(0000) knlGS:0000000000000000
[ 8043.164663] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8043.170409] CR2: 00007f7747e96680 CR3: 0000000887d60001 CR4: 00000000007706e0
[ 8043.177539] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 8043.184673] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 8043.191804] PKRU: 55555554
[ 8043.194517] Call Trace:
[ 8043.196970] rebind_subsystems+0x18c/0x470
[ 8043.201070] cgroup_setup_root+0x16c/0x2f0
[ 8043.205177] cgroup1_root_to_use+0x204/0x2a0
[ 8043.209456] cgroup1_get_tree+0x3e/0x120
[ 8043.213384] vfs_get_tree+0x22/0xb0
[ 8043.216883] do_new_mount+0x176/0x2d0
[ 8043.220550] __x64_sys_mount+0x103/0x140
[ 8043.224474] do_syscall_64+0x38/0x90
[ 8043.228063] entry_SYSCALL_64_after_hwframe+0x44/0xae
It was caused by the fact that rebind_subsystem() disables
controllers to be rebound one by one. If more than one disabled
controllers are originally from the default hierarchy, it means that
cgroup_apply_control_disable() will be called multiple times for the
same default hierarchy. A controller may be killed by css_kill() in
the first round. In the second round, the killed controller may not be
completely dead yet leading to the warning.
To avoid this problem, we collect all the ssid's of controllers that
needed to be disabled from the default hierarchy and then disable them
in one go instead of one by one.
Fixes: 334c3679ec ("cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 04f8ef5643 upstream.
When enabling CONFIG_CGROUP_BPF, kmemleak can be observed by running
the command as below:
$mount -t cgroup -o none,name=foo cgroup cgroup/
$umount cgroup/
unreferenced object 0xc3585c40 (size 64):
comm "mount", pid 425, jiffies 4294959825 (age 31.990s)
hex dump (first 32 bytes):
01 00 00 80 84 8c 28 c0 00 00 00 00 00 00 00 00 ......(.........
00 00 00 00 00 00 00 00 6c 43 a0 c3 00 00 00 00 ........lC......
backtrace:
[<e95a2f9e>] cgroup_bpf_inherit+0x44/0x24c
[<1f03679c>] cgroup_setup_root+0x174/0x37c
[<ed4b0ac5>] cgroup1_get_tree+0x2c0/0x4a0
[<f85b12fd>] vfs_get_tree+0x24/0x108
[<f55aec5c>] path_mount+0x384/0x988
[<e2d5e9cd>] do_mount+0x64/0x9c
[<208c9cfe>] sys_mount+0xfc/0x1f4
[<06dd06e0>] ret_fast_syscall+0x0/0x48
[<a8308cb3>] 0xbeb4daa8
This is because that since the commit 2b0d3d3e4f ("percpu_ref: reduce
memory footprint of percpu_ref in fast path") root_cgrp->bpf.refcnt.data
is allocated by the function percpu_ref_init in cgroup_bpf_inherit which
is called by cgroup_setup_root when mounting, but not freed along with
root_cgrp when umounting. Adding cgroup_bpf_offline which calls
percpu_ref_kill to cgroup_kill_sb can free root_cgrp->bpf.refcnt.data in
umount path.
This patch also fixes the commit 4bfc0bb2c6 ("bpf: decouple the lifetime
of cgroup_bpf from cgroup itself"). A cgroup_bpf_offline is needed to do a
cleanup that frees the resources which are allocated by cgroup_bpf_inherit
in cgroup_setup_root.
And inside cgroup_bpf_offline, cgroup_get() is at the beginning and
cgroup_put is at the end of cgroup_bpf_release which is called by
cgroup_bpf_offline. So cgroup_bpf_offline can keep the balance of
cgroup's refcount.
Fixes: 2b0d3d3e4f ("percpu_ref: reduce memory footprint of percpu_ref in fast path")
Fixes: 4bfc0bb2c6 ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
Signed-off-by: Quanyang Wang <quanyang.wang@windriver.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211018075623.26884-1-quanyang.wang@windriver.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6ba34d3c73 ]
The cpuset fields that manage partition root state do not strictly
follow the cpuset locking rule that update to cpuset has to be done
with both the callback_lock and cpuset_mutex held. This is now fixed
by making sure that the locking rule is upheld.
Fixes: 3881b86128 ("cpuset: Add an error state to cpuset.sched.partition")
Fixes: 4b842da276 ("cpuset: Make CPU hotplug work with partition")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0f3adb8a1e ]
Use more descriptive variable names for update_prstate(), remove
unnecessary code and fix some typos. There is no functional change.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 15d428e6fe ]
In cpuset_hotplug_workfn(), the detection of whether the cpu list
has been changed is done by comparing the effective cpus of the top
cpuset with the cpu_active_mask. However, in the rare case that just
all the CPUs in the subparts_cpus are offlined, the detection fails
and the partition states are not updated correctly. Fix it by forcing
the cpus_updated flag to true in this particular case.
Fixes: 4b842da276 ("cpuset: Make CPU hotplug work with partition")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1e7107c5ef upstream.
Richard reported sporadic (roughly one in 10 or so) null dereferences and
other strange behaviour for a set of automated LTP tests. Things like:
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014
RIP: 0010:kernfs_sop_show_path+0x1b/0x60
...or these others:
RIP: 0010:do_mkdirat+0x6a/0xf0
RIP: 0010:d_alloc_parallel+0x98/0x510
RIP: 0010:do_readlinkat+0x86/0x120
There were other less common instances of some kind of a general scribble
but the common theme was mount and cgroup and a dubious dentry triggering
the NULL dereference. I was only able to reproduce it under qemu by
replicating Richard's setup as closely as possible - I never did get it
to happen on bare metal, even while keeping everything else the same.
In commit 71d883c37e ("cgroup_do_mount(): massage calling conventions")
we see this as a part of the overall change:
--------------
struct cgroup_subsys *ss;
- struct dentry *dentry;
[...]
- dentry = cgroup_do_mount(&cgroup_fs_type, fc->sb_flags, root,
- CGROUP_SUPER_MAGIC, ns);
[...]
- if (percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
- struct super_block *sb = dentry->d_sb;
- dput(dentry);
+ ret = cgroup_do_mount(fc, CGROUP_SUPER_MAGIC, ns);
+ if (!ret && percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
+ struct super_block *sb = fc->root->d_sb;
+ dput(fc->root);
deactivate_locked_super(sb);
msleep(10);
return restart_syscall();
}
--------------
In changing from the local "*dentry" variable to using fc->root, we now
export/leave that dentry pointer in the file context after doing the dput()
in the unlikely "is_dying" case. With LTP doing a crazy amount of back to
back mount/unmount [testcases/bin/cgroup_regression_5_1.sh] the unlikely
becomes slightly likely and then bad things happen.
A fix would be to not leave the stale reference in fc->root as follows:
--------------
dput(fc->root);
+ fc->root = NULL;
deactivate_locked_super(sb);
--------------
...but then we are just open-coding a duplicate of fc_drop_locked() so we
simply use that instead.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org # v5.1+
Reported-by: Richard Purdie <richard.purdie@linuxfoundation.org>
Fixes: 71d883c37e ("cgroup_do_mount(): massage calling conventions")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3b0462726e upstream.
The following sequence can be used to trigger a UAF:
int fscontext_fd = fsopen("cgroup");
int fd_null = open("/dev/null, O_RDONLY);
int fsconfig(fscontext_fd, FSCONFIG_SET_FD, "source", fd_null);
close_range(3, ~0U, 0);
The cgroup v1 specific fs parser expects a string for the "source"
parameter. However, it is perfectly legitimate to e.g. specify a file
descriptor for the "source" parameter. The fs parser doesn't know what
a filesystem allows there. So it's a bug to assume that "source" is
always of type fs_value_is_string when it can reasonably also be
fs_value_is_file.
This assumption in the cgroup code causes a UAF because struct
fs_parameter uses a union for the actual value. Access to that union is
guarded by the param->type member. Since the cgroup paramter parser
didn't check param->type but unconditionally moved param->string into
fc->source a close on the fscontext_fd would trigger a UAF during
put_fs_context() which frees fc->source thereby freeing the file stashed
in param->file causing a UAF during a close of the fd_null.
Fix this by verifying that param->type is actually a string and report
an error if not.
In follow up patches I'll add a new generic helper that can be used here
and by other filesystems instead of this error-prone copy-pasta fix.
But fixing it in here first makes backporting a it to stable a lot
easier.
Fixes: 8d2451f499 ("cgroup1: switch to option-by-option parsing")
Reported-by: syzbot+283ce5a46486d6acdbaf@syzkaller.appspotmail.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@kernel.org>
Cc: syzkaller-bugs <syzkaller-bugs@googlegroups.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 45e1ba4083 ]
This patch effectively reverts the commit a3e72739b7 ("cgroup: fix
too early usage of static_branch_disable()"). The commit 6041186a32
("init: initialize jump labels before command line option parsing") has
moved the jump_label_init() before parse_args() which has made the
commit a3e72739b7 unnecessary. On the other hand there are
consequences of disabling the controllers later as there are subsystems
doing the controller checks for different decisions. One such incident
is reported [1] regarding the memory controller and its impact on memory
reclaim code.
[1] https://lore.kernel.org/linux-mm/921e53f3-4b13-aab8-4a9e-e83ff15371e4@nec.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: NOMURA JUNICHI(野村 淳一) <junichi.nomura@nec.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 61e960b07b ]
When mounting a cgroup hierarchy with disabled controller in cgroup v1,
all available controllers will be attached.
For example, boot with cgroup_no_v1=cpu or cgroup_disable=cpu, and then
mount with "mount -t cgroup -ocpu cpu /sys/fs/cgroup/cpu", then all
enabled controllers will be attached except cpu.
Fix this by adding disabled controller check in cgroup1_parse_param().
If the specified controller is disabled, just return error with information
"Disabled controller xx" rather than attaching all the other enabled
controllers.
Fixes: f5dfb5315d ("cgroup: take options parsing into ->parse_monolithic()")
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Reviewed-by: Zefan Li <lizefan.x@bytedance.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 385aac1519 upstream.
Fix NULL pointer dereference when adding new psi monitor to the root
cgroup. PSI files for root cgroup was introduced in df5ba5be74 by using
system wide psi struct when reading, but file write/monitor was not
properly fixed. Since the PSI config for the root cgroup isn't
initialized, the current implementation tries to lock a NULL ptr,
resulting in a crash.
Can be triggered by running this as root:
$ tee /sys/fs/cgroup/cpu.pressure <<< "some 10000 1000000"
Signed-off-by: Odin Ugedal <odin@uged.al>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Dan Schatzberg <dschatzberg@fb.com>
Fixes: df5ba5be74 ("kernel/sched/psi.c: expose pressure metrics on root cgroup")
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org # 5.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 406100f3da upstream.
One of our machines keeled over trying to rebuild the scheduler domains.
Mainline produces the same splat:
BUG: unable to handle page fault for address: 0000607f820054db
CPU: 2 PID: 149 Comm: kworker/1:1 Not tainted 5.10.0-rc1-master+ #6
Workqueue: events cpuset_hotplug_workfn
RIP: build_sched_domains
Call Trace:
partition_sched_domains_locked
rebuild_sched_domains_locked
cpuset_hotplug_workfn
It happens with cgroup2 and exclusive cpusets only. This reproducer
triggers it on an 8-cpu vm and works most effectively with no
preexisting child cgroups:
cd $UNIFIED_ROOT
mkdir cg1
echo 4-7 > cg1/cpuset.cpus
echo root > cg1/cpuset.cpus.partition
# with smt/control reading 'on',
echo off > /sys/devices/system/cpu/smt/control
RIP maps to
sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
from sd_init(). sd_id is calculated earlier in the same function:
cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
sd_id = cpumask_first(sched_domain_span(sd));
tl->mask(cpu), which reads cpu_sibling_map on x86, returns an empty mask
and so cpumask_first() returns >= nr_cpu_ids, which leads to the bogus
value from per_cpu_ptr() above.
The problem is a race between cpuset_hotplug_workfn() and a later
offline of CPU N. cpuset_hotplug_workfn() updates the effective masks
when N is still online, the offline clears N from cpu_sibling_map, and
then the worker uses the stale effective masks that still have N to
generate the scheduling domains, leading the worker to read
N's empty cpu_sibling_map in sd_init().
rebuild_sched_domains_locked() prevented the race during the cgroup2
cpuset series up until the Fixes commit changed its check. Make the
check more robust so that it can detect an offline CPU in any exclusive
cpuset's effective mask, not just the top one.
Fixes: 0ccea8feb9 ("cpuset: Make generate_sched_domains() work with partition")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201112171711.639541-1-daniel.m.jordan@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Do not report failure on zero sized writes, and handle them as no-op.
There's issues for example in case of writev() when there's iovec
containing zero buffer as a first one. It's expected writev() on below
example to successfully perform the write to specified writable cgroup
file expecting integer value, and to return 2. For now it's returning
value -1, and skipping the write:
int writetest(int fd) {
const char *buf1 = "";
const char *buf2 = "1\n";
struct iovec iov[2] = {
{ .iov_base = (void*)buf1, .iov_len = 0 },
{ .iov_base = (void*)buf2, .iov_len = 2 }
};
return writev(fd, iov, 2);
}
This patch fixes the issue by checking if there's nothing to write,
and handling the write as no-op by just returning 0.
Signed-off-by: Jouni Roivas <jouni.roivas@tuxera.com>
Signed-off-by: Tejun Heo <tj@kernel.org>