commit ee2a098851 upstream.
Let's say that the caller has storage for num_elem stack frames. Then,
the BPF stack helper functions walk the stack for only num_elem frames.
This means that if skip > 0, one keeps only 'num_elem - skip' frames.
This is because it sets init_nr in the perf_callchain_entry to the end
of the buffer to save num_elem entries only. I believe it was because
the perf callchain code unwound the stack frames until it reached the
global max size (sysctl_perf_event_max_stack).
However it now has perf_callchain_entry_ctx.max_stack to limit the
iteration locally. This simplifies the code to handle init_nr in the
BPF callstack entries and removes the confusion with the perf_event's
__PERF_SAMPLE_CALLCHAIN_EARLY which sets init_nr to 0.
Also change the comment on bpf_get_stack() in the header file to be
more explicit what the return value means.
Fixes: c195651e56 ("bpf: add bpf_get_stack helper")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/30a7b5d5-6726-1cc2-eaee-8da2828a9a9c@oracle.com
Link: https://lore.kernel.org/bpf/20220314182042.71025-1-namhyung@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based-on-patch-by: Eugene Loh <eugene.loh@oracle.com>
commit 75134f16e7 upstream.
syzbot reported various soft lockups caused by bpf batch operations.
INFO: task kworker/1:1:27 blocked for more than 140 seconds.
INFO: task hung in rcu_barrier
Nothing prevents batch ops to process huge amount of data,
we need to add schedule points in them.
Note that maybe_wait_bpf_programs(map) calls from
generic_map_delete_batch() can be factorized by moving
the call after the loop.
This will be done later in -next tree once we get this fix merged,
unless there is strong opinion doing this optimization sooner.
Fixes: aa2e93b8e5 ("bpf: Add generic support for update and delete batch ops")
Fixes: cb4d03ab49 ("bpf: Add generic support for lookup batch op")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Brian Vazquez <brianvv@google.com>
Link: https://lore.kernel.org/bpf/20220217181902.808742-1-eric.dumazet@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b293dcc473 upstream.
After commit 2fd3fb0be1d1 ("kasan, vmalloc: unpoison VM_ALLOC pages
after mapping"), non-VM_ALLOC mappings will be marked as accessible
in __get_vm_area_node() when KASAN is enabled. But now the flag for
ringbuf area is VM_ALLOC, so KASAN will complain out-of-bound access
after vmap() returns. Because the ringbuf area is created by mapping
allocated pages, so use VM_MAP instead.
After the change, info in /proc/vmallocinfo also changes from
[start]-[end] 24576 ringbuf_map_alloc+0x171/0x290 vmalloc user
to
[start]-[end] 24576 ringbuf_map_alloc+0x171/0x290 vmap user
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: syzbot+5ad567a418794b9b5983@syzkaller.appspotmail.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220202060158.6260-1-houtao1@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e60b0d12a9 ]
If we ever get to a point again where we convert a bogus looking <ptr>_or_null
typed register containing a non-zero fixed or variable offset, then lets not
reset these bounds to zero since they are not and also don't promote the register
to a <ptr> type, but instead leave it as <ptr>_or_null. Converting to a unknown
register could be an avenue as well, but then if we run into this case it would
allow to leak a kernel pointer this way.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ no upstream commit given implicitly fixed through the larger refactoring
in c25b2ae136 ]
While auditing some other code, I noticed missing checks inside the pointer
arithmetic simulation, more specifically, adjust_ptr_min_max_vals(). Several
*_OR_NULL types are not rejected whereas they are _required_ to be rejected
given the expectation is that they get promoted into a 'real' pointer type
for the success case, that is, after an explicit != NULL check.
One case which stands out and is accessible from unprivileged (iff enabled
given disabled by default) is BPF ring buffer. From crafting a PoC, the NULL
check can be bypassed through an offset, and its id marking will then lead
to promotion of mem_or_null to a mem type.
bpf_ringbuf_reserve() helper can trigger this case through passing of reserved
flags, for example.
func#0 @0
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (7a) *(u64 *)(r10 -8) = 0
1: R1=ctx(id=0,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm
1: (18) r1 = 0x0
3: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm
3: (b7) r2 = 8
4: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R10=fp0 fp-8_w=mmmmmmmm
4: (b7) r3 = 0
5: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R3_w=invP0 R10=fp0 fp-8_w=mmmmmmmm
5: (85) call bpf_ringbuf_reserve#131
6: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
6: (bf) r6 = r0
7: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
7: (07) r0 += 1
8: R0_w=mem_or_null(id=2,ref_obj_id=2,off=1,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
8: (15) if r0 == 0x0 goto pc+4
R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
9: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
9: (62) *(u32 *)(r6 +0) = 0
R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
10: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
10: (bf) r1 = r6
11: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
11: (b7) r2 = 0
12: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R2_w=invP0 R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
12: (85) call bpf_ringbuf_submit#132
13: R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm
13: (b7) r0 = 0
14: R0_w=invP0 R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm
14: (95) exit
from 8 to 13: safe
processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 0
OK
All three commits, that is b121b341e5 ("bpf: Add PTR_TO_BTF_ID_OR_NULL support"),
457f44363a ("bpf: Implement BPF ring buffer and verifier support for it"), and the
afbf21dce6 ("bpf: Support readonly/readwrite buffers in verifier") suffer the same
cause and their *_OR_NULL type pendants must be rejected in adjust_ptr_min_max_vals().
Make the test more robust by reusing reg_type_may_be_null() helper such that we catch
all *_OR_NULL types we have today and in future.
Note that pointer arithmetic on PTR_TO_BTF_ID, PTR_TO_RDONLY_BUF, and PTR_TO_RDWR_BUF
is generally allowed.
Fixes: b121b341e5 ("bpf: Add PTR_TO_BTF_ID_OR_NULL support")
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Fixes: afbf21dce6 ("bpf: Support readonly/readwrite buffers in verifier")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 08389d8882 upstream.
Add a kconfig knob which allows for unprivileged bpf to be disabled by default.
If set, the knob sets /proc/sys/kernel/unprivileged_bpf_disabled to value of 2.
This still allows a transition of 2 -> {0,1} through an admin. Similarly,
this also still keeps 1 -> {1} behavior intact, so that once set to permanently
disabled, it cannot be undone aside from a reboot.
We've also added extra2 with max of 2 for the procfs handler, so that an admin
still has a chance to toggle between 0 <-> 2.
Either way, as an additional alternative, applications can make use of CAP_BPF
that we added a while ago.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/74ec548079189e4e4dffaeb42b8987bb3c852eee.1620765074.git.daniel@iogearbox.net
Cc: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e572ff80f0 upstream.
Make the bounds propagation in __reg_assign_32_into_64() slightly more
robust and readable by aligning it similarly as we did back in the
__reg_combine_64_into_32() counterpart. Meaning, only propagate or
pessimize them as a smin/smax pair.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3cf2b61eb0 upstream.
For the case where both s32_{min,max}_value bounds are positive, the
__reg_assign_32_into_64() directly propagates them to their 64 bit
counterparts, otherwise it pessimises them into [0,u32_max] universe and
tries to refine them later on by learning through the tnum as per comment
in mentioned function. However, that does not always happen, for example,
in mov32 operation we call zext_32_to_64(dst_reg) which invokes the
__reg_assign_32_into_64() as is without subsequent bounds update as
elsewhere thus no refinement based on tnum takes place.
Thus, not calling into the __update_reg_bounds() / __reg_deduce_bounds() /
__reg_bound_offset() triplet as we do, for example, in case of ALU ops via
adjust_scalar_min_max_vals(), will lead to more pessimistic bounds when
dumping the full register state:
Before fix:
0: (b4) w0 = -1
1: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
1: (bc) w0 = w0
2: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=0,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
Technically, the smin_value=0 and smax_value=4294967295 bounds are not
incorrect, but given the register is still a constant, they break assumptions
about const scalars that smin_value == smax_value and umin_value == umax_value.
After fix:
0: (b4) w0 = -1
1: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
1: (bc) w0 = w0
2: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
Without the smin_value == smax_value and umin_value == umax_value invariant
being intact for const scalars, it is possible to leak out kernel pointers
from unprivileged user space if the latter is enabled. For example, when such
registers are involved in pointer arithmtics, then adjust_ptr_min_max_vals()
will taint the destination register into an unknown scalar, and the latter
can be exported and stored e.g. into a BPF map value.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7dd5d437c2 upstream.
In 32-bit architecture, the result of sizeof() is a 32-bit integer so
the expression becomes the multiplication between 2 32-bit integer which
can potentially leads to integer overflow. As a result,
bpf_map_area_alloc() allocates less memory than needed.
Fix this by casting 1 operand to u64.
Fixes: 0d2c4f9640 ("bpf: Eliminate rlimit-based memory accounting for sockmap and sockhash maps")
Fixes: 99c51064fb ("devmap: Use bpf_map_area_alloc() for allocating hash buckets")
Fixes: 546ac1ffb7 ("bpf: add devmap, a map for storing net device references")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210613143440.71975-1-minhquangbui99@gmail.com
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2fa7d94afc upstream.
The first commit cited below attempts to fix the off-by-one error that
appeared in some comparisons with an open range. Due to this error,
arithmetically equivalent pieces of code could get different verdicts
from the verifier, for example (pseudocode):
// 1. Passes the verifier:
if (data + 8 > data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
// 2. Rejected by the verifier (should still pass):
if (data + 7 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
The attempted fix, however, shifts the range by one in a wrong
direction, so the bug not only remains, but also such piece of code
starts failing in the verifier:
// 3. Rejected by the verifier, but the check is stricter than in #1.
if (data + 8 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
The change performed by that fix converted an off-by-one bug into
off-by-two. The second commit cited below added the BPF selftests
written to ensure than code chunks like #3 are rejected, however,
they should be accepted.
This commit fixes the off-by-two error by adjusting new_range in the
right direction and fixes the tests by changing the range into the
one that should actually fail.
Fixes: fb2a311a31 ("bpf: fix off by one for range markings with L{T, E} patterns")
Fixes: b37242c773 ("bpf: add test cases to bpf selftests to cover all access tests")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 353050be4c upstream.
Commit a23740ec43 ("bpf: Track contents of read-only maps as scalars") is
checking whether maps are read-only both from BPF program side and user space
side, and then, given their content is constant, reading out their data via
map->ops->map_direct_value_addr() which is then subsequently used as known
scalar value for the register, that is, it is marked as __mark_reg_known()
with the read value at verification time. Before a23740ec43, the register
content was marked as an unknown scalar so the verifier could not make any
assumptions about the map content.
The current implementation however is prone to a TOCTOU race, meaning, the
value read as known scalar for the register is not guaranteed to be exactly
the same at a later point when the program is executed, and as such, the
prior made assumptions of the verifier with regards to the program will be
invalid which can cause issues such as OOB access, etc.
While the BPF_F_RDONLY_PROG map flag is always fixed and required to be
specified at map creation time, the map->frozen property is initially set to
false for the map given the map value needs to be populated, e.g. for global
data sections. Once complete, the loader "freezes" the map from user space
such that no subsequent updates/deletes are possible anymore. For the rest
of the lifetime of the map, this freeze one-time trigger cannot be undone
anymore after a successful BPF_MAP_FREEZE cmd return. Meaning, any new BPF_*
cmd calls which would update/delete map entries will be rejected with -EPERM
since map_get_sys_perms() removes the FMODE_CAN_WRITE permission. This also
means that pending update/delete map entries must still complete before this
guarantee is given. This corner case is not an issue for loaders since they
create and prepare such program private map in successive steps.
However, a malicious user is able to trigger this TOCTOU race in two different
ways: i) via userfaultfd, and ii) via batched updates. For i) userfaultfd is
used to expand the competition interval, so that map_update_elem() can modify
the contents of the map after map_freeze() and bpf_prog_load() were executed.
This works, because userfaultfd halts the parallel thread which triggered a
map_update_elem() at the time where we copy key/value from the user buffer and
this already passed the FMODE_CAN_WRITE capability test given at that time the
map was not "frozen". Then, the main thread performs the map_freeze() and
bpf_prog_load(), and once that had completed successfully, the other thread
is woken up to complete the pending map_update_elem() which then changes the
map content. For ii) the idea of the batched update is similar, meaning, when
there are a large number of updates to be processed, it can increase the
competition interval between the two. It is therefore possible in practice to
modify the contents of the map after executing map_freeze() and bpf_prog_load().
One way to fix both i) and ii) at the same time is to expand the use of the
map's map->writecnt. The latter was introduced in fc9702273e ("bpf: Add mmap()
support for BPF_MAP_TYPE_ARRAY") and further refined in 1f6cb19be2 ("bpf:
Prevent re-mmap()'ing BPF map as writable for initially r/o mapping") with
the rationale to make a writable mmap()'ing of a map mutually exclusive with
read-only freezing. The counter indicates writable mmap() mappings and then
prevents/fails the freeze operation. Its semantics can be expanded beyond
just mmap() by generally indicating ongoing write phases. This would essentially
span any parallel regular and batched flavor of update/delete operation and
then also have map_freeze() fail with -EBUSY. For the check_mem_access() in
the verifier we expand upon the bpf_map_is_rdonly() check ensuring that all
last pending writes have completed via bpf_map_write_active() test. Once the
map->frozen is set and bpf_map_write_active() indicates a map->writecnt of 0
only then we are really guaranteed to use the map's data as known constants.
For map->frozen being set and pending writes in process of still being completed
we fall back to marking that register as unknown scalar so we don't end up
making assumptions about it. With this, both TOCTOU reproducers from i) and
ii) are fixed.
Note that the map->writecnt has been converted into a atomic64 in the fix in
order to avoid a double freeze_mutex mutex_{un,}lock() pair when updating
map->writecnt in the various map update/delete BPF_* cmd flavors. Spanning
the freeze_mutex over entire map update/delete operations in syscall side
would not be possible due to then causing everything to be serialized.
Similarly, something like synchronize_rcu() after setting map->frozen to wait
for update/deletes to complete is not possible either since it would also
have to span the user copy which can sleep. On the libbpf side, this won't
break d66562fba1 ("libbpf: Add BPF object skeleton support") as the
anonymous mmap()-ed "map initialization image" is remapped as a BPF map-backed
mmap()-ed memory where for .rodata it's non-writable.
Fixes: a23740ec43 ("bpf: Track contents of read-only maps as scalars")
Reported-by: w1tcher.bupt@gmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[fix conflict to call bpf_map_write_active_dec() in err_put block.
fix conflict to insert new functions after find_and_alloc_map().]
Reference: CVE-2021-4001
Signed-off-by: Masami Ichikawa(CIP) <masami.ichikawa@cybertrust.co.jp>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b9979db834 ]
Before this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff))
After this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1))
While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1
and call __reg_combine_64_into_32(true_reg).
Without the fix it would not pass the condition:
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value))
since umin_value == 0 at this point.
Before commit 10bf4e8316 the umin was incorrectly ingored.
The commit 10bf4e8316 fixed the correctness issue, but pessimized
propagation of 64-bit min max into 32-bit min max and corresponding var_off.
Fixes: 10bf4e8316 ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 54713c85f5 upstream.
Lorenzo noticed that the code testing for program type compatibility of
tail call maps is potentially racy in that two threads could encounter a
map with an unset type simultaneously and both return true even though they
are inserting incompatible programs.
The race window is quite small, but artificially enlarging it by adding a
usleep_range() inside the check in bpf_prog_array_compatible() makes it
trivial to trigger from userspace with a program that does, essentially:
map_fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, 4, 4, 2, 0);
pid = fork();
if (pid) {
key = 0;
value = xdp_fd;
} else {
key = 1;
value = tc_fd;
}
err = bpf_map_update_elem(map_fd, &key, &value, 0);
While the race window is small, it has potentially serious ramifications in
that triggering it would allow a BPF program to tail call to a program of a
different type. So let's get rid of it by protecting the update with a
spinlock. The commit in the Fixes tag is the last commit that touches the
code in question.
v2:
- Use a spinlock instead of an atomic variable and cmpxchg() (Alexei)
v3:
- Put lock and the members it protects into an embedded 'owner' struct (Daniel)
Fixes: 3324b584b6 ("ebpf: misc core cleanup")
Reported-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026110019.363464-1-toke@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 30e29a9a2b ]
In prealloc_elems_and_freelist(), the multiplication to calculate the
size passed to bpf_map_area_alloc() could lead to an integer overflow.
As a result, out-of-bounds write could occur in pcpu_freelist_populate()
as reported by KASAN:
[...]
[ 16.968613] BUG: KASAN: slab-out-of-bounds in pcpu_freelist_populate+0xd9/0x100
[ 16.969408] Write of size 8 at addr ffff888104fc6ea0 by task crash/78
[ 16.970038]
[ 16.970195] CPU: 0 PID: 78 Comm: crash Not tainted 5.15.0-rc2+ #1
[ 16.970878] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[ 16.972026] Call Trace:
[ 16.972306] dump_stack_lvl+0x34/0x44
[ 16.972687] print_address_description.constprop.0+0x21/0x140
[ 16.973297] ? pcpu_freelist_populate+0xd9/0x100
[ 16.973777] ? pcpu_freelist_populate+0xd9/0x100
[ 16.974257] kasan_report.cold+0x7f/0x11b
[ 16.974681] ? pcpu_freelist_populate+0xd9/0x100
[ 16.975190] pcpu_freelist_populate+0xd9/0x100
[ 16.975669] stack_map_alloc+0x209/0x2a0
[ 16.976106] __sys_bpf+0xd83/0x2ce0
[...]
The possibility of this overflow was originally discussed in [0], but
was overlooked.
Fix the integer overflow by changing elem_size to u64 from u32.
[0] https://lore.kernel.org/bpf/728b238e-a481-eb50-98e9-b0f430ab01e7@gmail.com/
Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210930135545.173698-1-th.yasumatsu@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8a98ae12fb ]
When introducing CAP_BPF, bpf_jit_charge_modmem() was not changed to treat
programs with CAP_BPF as privileged for the purpose of JIT memory allocation.
This means that a program without CAP_BPF can block a program with CAP_BPF
from loading a program.
Fix this by checking bpf_capable() in bpf_jit_charge_modmem().
Fixes: 2c78ee898d ("bpf: Implement CAP_BPF")
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210922111153.19843-1-lmb@cloudflare.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 356ed64991 ]
Currently if a function ptr in struct_ops has a return value, its
caller will get a random return value from it, because the return
value of related BPF_PROG_TYPE_STRUCT_OPS prog is just dropped.
So adding a new flag BPF_TRAMP_F_RET_FENTRY_RET to tell bpf trampoline
to save and return the return value of struct_ops prog if ret_size of
the function ptr is greater than 0. Also restricting the flag to be
used alone.
Fixes: 85d33df357 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210914023351.3664499-1-houtao1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d7af7e497f ]
Fix a verifier bug found by smatch static checker in [0].
This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.
When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that
cnt >= ARRAY_SIZE(insn_buf)
And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.
Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.
The full report [0] is below:
kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c
12282
12283 insn->off = off & ~(size_default - 1);
12284 insn->code = BPF_LDX | BPF_MEM | size_code;
12285 }
12286
12287 target_size = 0;
12288 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12289 &target_size);
12290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.
12291 (ctx_field_size && !target_size)) {
12292 verbose(env, "bpf verifier is misconfigured\n");
12293 return -EINVAL;
12294 }
12295
12296 if (is_narrower_load && size < target_size) {
12297 u8 shift = bpf_ctx_narrow_access_offset(
12298 off, size, size_default) * 8;
12299 if (ctx_field_size <= 4) {
12300 if (shift)
12301 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
^^^^^
increment beyond end of array
12302 insn->dst_reg,
12303 shift);
--> 12304 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
^^^^^
out of bounds write
12305 (1 << size * 8) - 1);
12306 } else {
12307 if (shift)
12308 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12309 insn->dst_reg,
12310 shift);
12311 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
^^^^^^^^^^^^^^^
Same.
12312 (1ULL << size * 8) - 1);
12313 }
12314 }
12315
12316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12317 if (!new_prog)
12318 return -ENOMEM;
12319
12320 delta += cnt - 1;
12321
12322 /* keep walking new program and skip insns we just inserted */
12323 env->prog = new_prog;
12324 insn = new_prog->insnsi + i + delta;
12325 }
12326
12327 return 0;
12328 }
[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/
v1->v2:
- clarify that problem was only seen by static checker but not in prod;
Fixes: 46f53a65d2 ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 75f0fc7b48 ]
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.
There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().
So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.
Fixes: 8041902dae ("bpf: adjust insn_aux_data when patching insns")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>