The following changes are introduced:
1. Rename rcu_invoke_kfree_callback() to rcu_invoke_kvfree_callback(),
as well as the associated trace events, so the rcu_kfree_callback(),
becomes rcu_kvfree_callback(). The reason is to be aligned with kvfree()
notation.
2. Rename __is_kfree_rcu_offset to __is_kvfree_rcu_offset. All RCU
paths use kvfree() now instead of kfree(), thus rename it.
3. Rename kfree_call_rcu() to the kvfree_call_rcu(). The reason is,
it is capable of freeing vmalloc() memory now. Do the same with
__kfree_rcu() macro, it becomes __kvfree_rcu(), the goal is the
same.
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Same as rcu_is_watching() but without the preempt_disable/enable() pair
inside the function. It is merked noinstr so it ends up in the
non-instrumentable text section.
This is useful for non-preemptible code especially in the low level entry
section. Using rcu_is_watching() there results in a call to the
preempt_schedule_notrace() thunk which triggers noinstr section warnings in
objtool.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200512213810.518709291@linutronix.de
Interrupts and exceptions invoke rcu_irq_enter() on entry and need to
invoke rcu_irq_exit() before they either return to the interrupted code or
invoke the scheduler due to preemption.
The general assumption is that RCU idle code has to have preemption
disabled so that a return from interrupt cannot schedule. So the return
from interrupt code invokes rcu_irq_exit() and preempt_schedule_irq().
If there is any imbalance in the rcu_irq/nmi* invocations or RCU idle code
had preemption enabled then this goes unnoticed until the CPU goes idle or
some other RCU check is executed.
Provide rcu_irq_exit_preempt() which can be invoked from the
interrupt/exception return code in case that preemption is enabled. It
invokes rcu_irq_exit() and contains a few sanity checks in case that
CONFIG_PROVE_RCU is enabled to catch such issues directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.364456424@linutronix.de
This commit adds rcu_gp_might_be_stalled(), which returns true if there
is some reason to believe that the RCU grace period is stalled. The use
case is where an RCU free-memory path needs to allocate memory in order
to free it, a situation that should be avoided where possible.
But where it is necessary, there is always the alternative of using
synchronize_rcu() to wait for a grace period in order to avoid the
allocation. And if the grace period is stalled, allocating memory to
asynchronously wait for it is a bad idea of epic proportions: Far better
to let others use the memory, because these others might actually be
able to free that memory before the grace period ends.
Thus, rcu_gp_might_be_stalled() can be used to help decide whether
allocating memory on an RCU free path is a semi-reasonable course
of action.
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Some larger systems can take in excess of 50 seconds to complete their
early boot initcalls prior to spawing init. This does not in any way
help the forward-progress judgments of built-in rcutorture (when
rcutorture is built as a module, the insmod or modprobe command normally
cannot happen until some time after boot completes). This commit
therefore suppresses such complaints until about the time that init
is spawned.
This also includes a fix to a stupid error located by kbuild test robot.
[ paulmck: Apply kbuild test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ paulmck: Fix to nohz_full slow-expediting recovery logic, per bpetkov. ]
[ paulmck: Restrict splat to CONFIG_PREEMPT_RT=y kernels and simplify. ]
Tested-by: Borislav Petkov <bp@alien8.de>
Now that the kfree_rcu() special-casing has been removed from tree RCU,
this commit removes kfree_call_rcu_nobatch() since it is no longer needed.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Recently a discussion about stability and performance of a system
involving a high rate of kfree_rcu() calls surfaced on the list [1]
which led to another discussion how to prepare for this situation.
This patch adds basic batching support for kfree_rcu(). It is "basic"
because we do none of the slab management, dynamic allocation, code
moving or any of the other things, some of which previous attempts did
[2]. These fancier improvements can be follow-up patches and there are
different ideas being discussed in those regards. This is an effort to
start simple, and build up from there. In the future, an extension to
use kfree_bulk and possibly per-slab batching could be done to further
improve performance due to cache-locality and slab-specific bulk free
optimizations. By using an array of pointers, the worker thread
processing the work would need to read lesser data since it does not
need to deal with large rcu_head(s) any longer.
Torture tests follow in the next patch and show improvements of around
5x reduction in number of grace periods on a 16 CPU system. More
details and test data are in that patch.
There is an implication with rcu_barrier() with this patch. Since the
kfree_rcu() calls can be batched, and may not be handed yet to the RCU
machinery in fact, the monitor may not have even run yet to do the
queue_rcu_work(), there seems no easy way of implementing rcu_barrier()
to wait for those kfree_rcu()s that are already made. So this means a
kfree_rcu() followed by an rcu_barrier() does not imply that memory will
be freed once rcu_barrier() returns.
Another implication is higher active memory usage (although not
run-away..) until the kfree_rcu() flooding ends, in comparison to
without batching. More details about this are in the second patch which
adds an rcuperf test.
Finally, in the near future we will get rid of kfree_rcu() special casing
within RCU such as in rcu_do_batch and switch everything to just
batching. Currently we don't do that since timer subsystem is not yet up
and we cannot schedule the kfree_rcu() monitor as the timer subsystem's
lock are not initialized. That would also mean getting rid of
kfree_call_rcu_nobatch() entirely.
[1] http://lore.kernel.org/lkml/20190723035725-mutt-send-email-mst@kernel.org
[2] https://lkml.org/lkml/2017/12/19/824
Cc: kernel-team@android.com
Cc: kernel-team@lge.com
Co-developed-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ paulmck: Applied 0day and Paul Walmsley feedback on ->monitor_todo. ]
[ paulmck: Make it work during early boot. ]
[ paulmck: Add a crude early boot self-test. ]
[ paulmck: Style adjustments and experimental docbook structure header. ]
Link: https://lore.kernel.org/lkml/alpine.DEB.2.21.9999.1908161931110.32497@viisi.sifive.com/T/#me9956f66cb611b95d26ae92700e1d901f46e8c59
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When multi_cpu_stop() loops waiting for other tasks, it can trigger an RCU
CPU stall warning. This can be misleading because what is instead needed
is information on whatever task is blocking multi_cpu_stop(). This commit
therefore inserts an RCU quiescent state into the multi_cpu_stop()
function's waitloop.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Replace the license boiler plate with a SPDX license identifier.
While in the area, update an email address.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Update .h SPDX format per Joe Perches. ]
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Now that rcu_all_qs() is used only in !PREEMPT builds, move it to
tree_plugin.h so that it is defined only in those builds. This in
turn means that rcu_momentary_dyntick_idle() is only used in !PREEMPT
builds, but it is simply marked __maybe_unused in order to keep it
near the rest of the dyntick-idle code.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit saves a few lines by consolidating the RCU-sched function
definitions at the end of include/linux/rcupdate.h. This consolidation
also makes it easier to remove them all when the time comes.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit saves a few lines by consolidating the RCU-bh function
definitions at the end of include/linux/rcupdate.h. This consolidation
also makes it easier to remove them all when the time comes.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit renames Tiny RCU functions so that the lowest level of
functionality is RCU (e.g., synchronize_rcu()) rather than RCU-sched
(e.g., synchronize_sched()). This provides greater naming compatibility
with Tree RCU, which will in turn permit more LoC removal once
the RCU-sched and RCU-bh update-side API is removed.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix Tiny call_rcu()'s EXPORT_SYMBOL() in response to a bug
report from kbuild test robot. ]
Now that RCU-preempt knows about preemption disabling, its implementation
of synchronize_rcu() works for synchronize_sched(), and likewise for the
other RCU-sched update-side API members. This commit therefore confines
the RCU-sched update-side code to CONFIG_PREEMPT=n builds, and defines
RCU-sched's update-side API members in terms of those of RCU-preempt.
This means that any given build of the Linux kernel has only one
update-side flavor of RCU, namely RCU-preempt for CONFIG_PREEMPT=y builds
and RCU-sched for CONFIG_PREEMPT=n builds. This in turn means that kernels
built with CONFIG_RCU_NOCB_CPU=y have only one rcuo kthread per CPU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
This commit updates comments and help text to account for the fact that
RCU-bh update-side functions are now simple wrappers for their RCU or
RCU-sched counterparts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that the main RCU API knows about softirq disabling and softirq's
quiescent states, the RCU-bh update code can be dispensed with.
This commit therefore removes the RCU-bh update-side implementation and
defines RCU-bh's update-side API in terms of that of either RCU-preempt or
RCU-sched, depending on the setting of the CONFIG_PREEMPT Kconfig option.
In kernels built with CONFIG_RCU_NOCB_CPU=y this has the knock-on effect
of reducing by one the number of rcuo kthreads per CPU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
One necessary step towards consolidating the three flavors of RCU is to
make sure that the resulting consolidated "one flavor to rule them all"
correctly handles networking denial-of-service attacks. One thing that
allows RCU-bh to do so is that __do_softirq() invokes rcu_bh_qs() every
so often, and so something similar has to happen for consolidated RCU.
This must be done carefully. For example, if a preemption-disabled
region of code takes an interrupt which does softirq processing before
returning, consolidated RCU must ignore the resulting rcu_bh_qs()
invocations -- preemption is still disabled, and that means an RCU
reader for the consolidated flavor.
This commit therefore creates a new rcu_softirq_qs() that is called only
from the ksoftirqd task, thus avoiding the interrupted-a-preempted-region
problem. This new rcu_softirq_qs() function invokes rcu_sched_qs(),
rcu_preempt_qs(), and rcu_preempt_deferred_qs(). The latter call handles
any deferred quiescent states.
Note that __do_softirq() still invokes rcu_bh_qs(). It will continue to
do so until a later stage of cleanup when the RCU-bh flavor is removed.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix !SMP issue located by kbuild test robot. ]
The x86/mtrr code does horrific things because hardware. It uses
stop_machine_from_inactive_cpu(), which does a wakeup (of the stopper
thread on another CPU), which uses RCU, all before the CPU is onlined.
RCU complains about this, because wakeups use RCU and RCU does
(rightfully) not consider offline CPUs for grace-periods.
Fix this by initializing RCU way early in the MTRR case.
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Add !SMP support, per 0day Test Robot report. ]
Because rcu_eqs_special_set() is declared only in internal header
kernel/rcu/tree.h and stubbed in include/linux/rcutiny.h, it is
inaccessible outside of the RCU implementation. This patch therefore
moves the rcu_eqs_special_set() declaration to include/linux/rcutree.h,
which allows it to be used in non-rcu kernel code.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Nicholas Piggin <npiggin@gmail.com>
Now that the irq path uses the rcu_nmi_{enter,exit}() algorithm,
rcu_irq_enter() and rcu_irq_exit() may be used from any context. There is
thus no need for rcu_irq_enter_disabled() and for the checks using it.
This commit therefore eliminates rcu_irq_enter_disabled().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit removes a #ifdef and saves a few lines of code by moving
the rcu_end_inkernel_boot() function from include/linux/rcupdate.h to
include/linux/rcutiny.h (for TINY_RCU) and to include/linux/rcutree.h
(for TREE_RCU).
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_request_urgent_qs_task() function is used only within RCU,
so there is no point in exporting it to the rest of the kernel from
nclude/linux/rcutiny.h and include/linux/rcutree.h. This commit therefore
moves this function to kernel/rcu/rcu.h.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>