Commit Graph

729 Commits

Author SHA1 Message Date
Tejun Heo
2a8ab0fbd1 Merge branch 'workqueue/for-5.16-fixes' into workqueue/for-5.17
for-5.16-fixes contains two subtle race conditions which were introduced by
scheduler side code cleanups. The branch didn't get pushed out, so merge
into for-5.17.
2022-01-10 07:54:04 -10:00
Lai Jiangshan
84f91c62d6 workqueue: Remove the cacheline_aligned for nr_running
nr_running is never modified remotely after the schedule callback in
wakeup path is removed.

Rather nr_running is often accessed with other fields in the pool
together, so the cacheline_aligned for nr_running isn't needed.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-09 12:26:54 -10:00
Lai Jiangshan
989442d737 workqueue: Move the code of waking a worker up in unbind_workers()
In unbind_workers(), there are two pool->lock held sections separated
by the code of zapping nr_running.  wake_up_worker() needs to be in
pool->lock held section and after zapping nr_running.  And zapping
nr_running had to be after schedule() when the local wake up
functionality was in use.  Now, the call to schedule() has been removed
along with the local wake up functionality, so the code can be merged
into the same pool->lock held section.

The diffstat shows that it is other code moved down because the diff
tools can not know the meaning of merging lock sections by swapping
two code blocks.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-09 12:23:15 -10:00
Lai Jiangshan
b4ac9384ac workqueue: Remove schedule() in unbind_workers()
The commit 6d25be5782 ("sched/core, workqueues: Distangle worker
accounting from rq lock") changed the schedule callbacks for workqueue
and moved the schedule callback from the wakeup code to at end of
schedule() in the worker's process context.

It means that the callback wq_worker_running() is guaranteed that
it sees the %WORKER_UNBOUND flag after scheduled since unbind_workers()
is running on the same CPU that all the pool's workers bound to.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-09 12:20:24 -10:00
Lai Jiangshan
11b45b0bf4 workqueue: Remove outdated comment about exceptional workers in unbind_workers()
Long time before, workers are not ALL bound after CPU_ONLINE, they can
still be running in other CPUs before self rebinding.

But the commit a9ab775bca ("workqueue: directly restore CPU affinity
of workers from CPU_ONLINE") makes rebind_workers() bind them all.

So all workers are on the CPU before the CPU is down.

And the comment in unbind_workers() refers to the workers "which are
still executing works from before the last CPU down" is outdated.
Just removed it.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-09 12:16:08 -10:00
Lai Jiangshan
3e5f39ea33 workqueue: Remove the advanced kicking of the idle workers in rebind_workers()
The commit 6d25be5782 ("sched/core, workqueues: Distangle worker
accounting from rq lock") changed the schedule callbacks for workqueue
and removed the local-wake-up functionality.

Now the wakingup of workers is done by normal fashion and workers not
yet migrated to the specific CPU in concurrency managed pool can also
be woken up by workers that already bound to the specific cpu now.

So this advanced kicking of the idle workers to migrate them to the
associated CPU is unneeded now.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-09 12:15:41 -10:00
Lai Jiangshan
ccf45156fd workqueue: Remove the outdated comment before wq_worker_sleeping()
It isn't called with preempt disabled now.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-09 12:15:15 -10:00
Frederic Weisbecker
45c753f5f2 workqueue: Fix unbind_workers() VS wq_worker_sleeping() race
At CPU-hotplug time, unbind_workers() may preempt a worker while it is
going to sleep. In that case the following scenario can happen:

    unbind_workers()                     wq_worker_sleeping()
    --------------                      -------------------
                                      if (worker->flags & WORKER_NOT_RUNNING)
                                          return;
                                      //PREEMPTED by unbind_workers
    worker->flags |= WORKER_UNBOUND;
    [...]
    atomic_set(&pool->nr_running, 0);
    //resume to worker
                                       atomic_dec_and_test(&pool->nr_running);

After unbind_worker() resets pool->nr_running, the value is expected to
remain 0 until the pool ever gets rebound in case cpu_up() is called on
the target CPU in the future. But here the race leaves pool->nr_running
with a value of -1, triggering the following warning when the worker goes
idle:

        WARNING: CPU: 3 PID: 34 at kernel/workqueue.c:1823 worker_enter_idle+0x95/0xc0
        Modules linked in:
        CPU: 3 PID: 34 Comm: kworker/3:0 Not tainted 5.16.0-rc1+ #34
        Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
        Workqueue:  0x0 (rcu_par_gp)
        RIP: 0010:worker_enter_idle+0x95/0xc0
        Code: 04 85 f8 ff ff ff 39 c1 7f 09 48 8b 43 50 48 85 c0 74 1b 83 e2 04 75 99 8b 43 34 39 43 30 75 91 8b 83 00 03 00 00 85 c0 74 87 <0f> 0b 5b c3 48 8b 35 70 f1 37 01 48 8d 7b 48 48 81 c6 e0 93  0
        RSP: 0000:ffff9b7680277ed0 EFLAGS: 00010086
        RAX: 00000000ffffffff RBX: ffff93465eae9c00 RCX: 0000000000000000
        RDX: 0000000000000000 RSI: ffff9346418a0000 RDI: ffff934641057140
        RBP: ffff934641057170 R08: 0000000000000001 R09: ffff9346418a0080
        R10: ffff9b768027fdf0 R11: 0000000000002400 R12: ffff93465eae9c20
        R13: ffff93465eae9c20 R14: ffff93465eae9c70 R15: ffff934641057140
        FS:  0000000000000000(0000) GS:ffff93465eac0000(0000) knlGS:0000000000000000
        CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
        CR2: 0000000000000000 CR3: 000000001cc0c000 CR4: 00000000000006e0
        DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
        DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
        Call Trace:
          <TASK>
          worker_thread+0x89/0x3d0
          ? process_one_work+0x400/0x400
          kthread+0x162/0x190
          ? set_kthread_struct+0x40/0x40
          ret_from_fork+0x22/0x30
          </TASK>

Also due to this incorrect "nr_running == -1", all sorts of hazards can
happen, starting with queued works being ignored because no workers are
awaken at insert_work() time.

Fix this with checking again the worker flags while pool->lock is locked.

Fixes: b945efcdd0 ("sched: Remove pointless preemption disable in sched_submit_work()")
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-02 13:00:59 -10:00
Frederic Weisbecker
07edfece8b workqueue: Fix unbind_workers() VS wq_worker_running() race
At CPU-hotplug time, unbind_worker() may preempt a worker while it is
waking up. In that case the following scenario can happen:

        unbind_workers()                     wq_worker_running()
        --------------                      -------------------
        	                      if (!(worker->flags & WORKER_NOT_RUNNING))
        	                          //PREEMPTED by unbind_workers
        worker->flags |= WORKER_UNBOUND;
        [...]
        atomic_set(&pool->nr_running, 0);
        //resume to worker
		                              atomic_inc(&worker->pool->nr_running);

After unbind_worker() resets pool->nr_running, the value is expected to
remain 0 until the pool ever gets rebound in case cpu_up() is called on
the target CPU in the future. But here the race leaves pool->nr_running
with a value of 1, triggering the following warning when the worker goes
idle:

	WARNING: CPU: 3 PID: 34 at kernel/workqueue.c:1823 worker_enter_idle+0x95/0xc0
	Modules linked in:
	CPU: 3 PID: 34 Comm: kworker/3:0 Not tainted 5.16.0-rc1+ #34
	Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
	Workqueue:  0x0 (rcu_par_gp)
	RIP: 0010:worker_enter_idle+0x95/0xc0
	Code: 04 85 f8 ff ff ff 39 c1 7f 09 48 8b 43 50 48 85 c0 74 1b 83 e2 04 75 99 8b 43 34 39 43 30 75 91 8b 83 00 03 00 00 85 c0 74 87 <0f> 0b 5b c3 48 8b 35 70 f1 37 01 48 8d 7b 48 48 81 c6 e0 93  0
	RSP: 0000:ffff9b7680277ed0 EFLAGS: 00010086
	RAX: 00000000ffffffff RBX: ffff93465eae9c00 RCX: 0000000000000000
	RDX: 0000000000000000 RSI: ffff9346418a0000 RDI: ffff934641057140
	RBP: ffff934641057170 R08: 0000000000000001 R09: ffff9346418a0080
	R10: ffff9b768027fdf0 R11: 0000000000002400 R12: ffff93465eae9c20
	R13: ffff93465eae9c20 R14: ffff93465eae9c70 R15: ffff934641057140
	FS:  0000000000000000(0000) GS:ffff93465eac0000(0000) knlGS:0000000000000000
	CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	CR2: 0000000000000000 CR3: 000000001cc0c000 CR4: 00000000000006e0
	DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
	DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
	Call Trace:
	  <TASK>
	  worker_thread+0x89/0x3d0
	  ? process_one_work+0x400/0x400
	  kthread+0x162/0x190
	  ? set_kthread_struct+0x40/0x40
	  ret_from_fork+0x22/0x30
	  </TASK>

Also due to this incorrect "nr_running == 1", further queued work may
end up not being served, because no worker is awaken at work insert time.
This raises rcutorture writer stalls for example.

Fix this with disabling preemption in the right place in
wq_worker_running().

It's worth noting that if the worker migrates and runs concurrently with
unbind_workers(), it is guaranteed to see the WORKER_UNBOUND flag update
due to set_cpus_allowed_ptr() acquiring/releasing rq->lock.

Fixes: 6d25be5782 ("sched/core, workqueues: Distangle worker accounting from rq lock")
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-02 12:59:58 -10:00
Paul E. McKenney
443378f066 workqueue: Upgrade queue_work_on() comment
The current queue_work_on() docbook comment says that the caller must
ensure that the specified CPU can't go away, but does not spell out the
consequences, which turn out to be quite mild.  Therefore expand this
comment to explicitly say that the penalty for failing to nail down the
specified CPU is that the workqueue handler might find itself executing
on some other CPU.

Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-12-01 06:47:45 -10:00
Linus Torvalds
512b7931ad Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "257 patches.

  Subsystems affected by this patch series: scripts, ocfs2, vfs, and
  mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
  gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
  pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
  memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
  vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
  cleanups, kfence, and damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
  mm/damon: remove return value from before_terminate callback
  mm/damon: fix a few spelling mistakes in comments and a pr_debug message
  mm/damon: simplify stop mechanism
  Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
  Docs/admin-guide/mm/damon/start: simplify the content
  Docs/admin-guide/mm/damon/start: fix a wrong link
  Docs/admin-guide/mm/damon/start: fix wrong example commands
  mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
  mm/damon: remove unnecessary variable initialization
  Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
  mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
  selftests/damon: support watermarks
  mm/damon/dbgfs: support watermarks
  mm/damon/schemes: activate schemes based on a watermarks mechanism
  tools/selftests/damon: update for regions prioritization of schemes
  mm/damon/dbgfs: support prioritization weights
  mm/damon/vaddr,paddr: support pageout prioritization
  mm/damon/schemes: prioritize regions within the quotas
  mm/damon/selftests: support schemes quotas
  mm/damon/dbgfs: support quotas of schemes
  ...
2021-11-06 14:08:17 -07:00
Marco Elver
f70da745be workqueue, kasan: avoid alloc_pages() when recording stack
Shuah Khan reported:

 | When CONFIG_PROVE_RAW_LOCK_NESTING=y and CONFIG_KASAN are enabled,
 | kasan_record_aux_stack() runs into "BUG: Invalid wait context" when
 | it tries to allocate memory attempting to acquire spinlock in page
 | allocation code while holding workqueue pool raw_spinlock.
 |
 | There are several instances of this problem when block layer tries
 | to __queue_work(). Call trace from one of these instances is below:
 |
 |     kblockd_mod_delayed_work_on()
 |       mod_delayed_work_on()
 |         __queue_delayed_work()
 |           __queue_work() (rcu_read_lock, raw_spin_lock pool->lock held)
 |             insert_work()
 |               kasan_record_aux_stack()
 |                 kasan_save_stack()
 |                   stack_depot_save()
 |                     alloc_pages()
 |                       __alloc_pages()
 |                         get_page_from_freelist()
 |                           rm_queue()
 |                             rm_queue_pcplist()
 |                               local_lock_irqsave(&pagesets.lock, flags);
 |                               [ BUG: Invalid wait context triggered ]

The default kasan_record_aux_stack() calls stack_depot_save() with
GFP_NOWAIT, which in turn can then call alloc_pages(GFP_NOWAIT, ...).
In general, however, it is not even possible to use either GFP_ATOMIC
nor GFP_NOWAIT in certain non-preemptive contexts, including
raw_spin_locks (see gfp.h and commmit ab00db216c).

Fix it by instructing stackdepot to not expand stack storage via
alloc_pages() in case it runs out by using
kasan_record_aux_stack_noalloc().

While there is an increased risk of failing to insert the stack trace,
this is typically unlikely, especially if the same insertion had already
succeeded previously (stack depot hit).

For frequent calls from the same location, it therefore becomes
extremely unlikely that kasan_record_aux_stack_noalloc() fails.

Link: https://lkml.kernel.org/r/20210902200134.25603-1-skhan@linuxfoundation.org
Link: https://lkml.kernel.org/r/20210913112609.2651084-7-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Shuah Khan <skhan@linuxfoundation.org>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Taras Madan <tarasmadan@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:33 -07:00
Imran Khan
55df0933be workqueue: Introduce show_one_worker_pool and show_one_workqueue.
Currently show_workqueue_state shows the state of all workqueues and of
all worker pools. In certain cases we may need to dump state of only a
specific workqueue or worker pool. For example in destroy_workqueue we
only need to show state of the workqueue which is getting destroyed.

So rename show_workqueue_state to show_all_workqueues(to signify it
dumps state of all busy workqueues) and divide it into more granular
functions (show_one_workqueue and show_one_worker_pool), that would show
states of individual workqueues and worker pools and can be used in
cases such as the one mentioned above.

Also, as mentioned earlier, make destroy_workqueue dump data pertaining
to only the workqueue that is being destroyed and make user(s) of
earlier interface(show_workqueue_state), use new interface
(show_all_workqueues).

Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-20 06:19:03 -10:00
Menglong Dong
d25302e465 workqueue: make sysfs of unbound kworker cpumask more clever
Some unfriendly component, such as dpdk, write the same mask to
unbound kworker cpumask again and again. Every time it write to
this interface some work is queue to cpu, even though the mask
is same with the original mask.

So, fix it by return success and do nothing if the cpumask is
equal with the old one.

Signed-off-by: Mengen Sun <mengensun@tencent.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-19 08:38:31 -10:00
Johan Hovold
57116ce17b workqueue: fix state-dump console deadlock
Console drivers often queue work while holding locks also taken in their
console write paths, something which can lead to deadlocks on SMP when
dumping workqueue state (e.g. sysrq-t or on suspend failures).

For serial console drivers this could look like:

	CPU0				CPU1
	----				----

	show_workqueue_state();
	  lock(&pool->lock);		<IRQ>
	  				  lock(&port->lock);
					  schedule_work();
					    lock(&pool->lock);
	  printk();
	    lock(console_owner);
	    lock(&port->lock);

where workqueues are, for example, used to push data to the line
discipline, process break signals and handle modem-status changes. Line
disciplines and serdev drivers can also queue work on write-wakeup
notifications, etc.

Reworking every console driver to avoid queuing work while holding locks
also taken in their write paths would complicate drivers and is neither
desirable or feasible.

Instead use the deferred-printk mechanism to avoid printing while
holding pool locks when dumping workqueue state.

Note that there are a few WARN_ON() assertions in the workqueue code
which could potentially also trigger a deadlock. Hopefully the ongoing
printk rework will provide a general solution for this eventually.

This was originally reported after a lockdep splat when executing
sysrq-t with the imx serial driver.

Fixes: 3494fc3084 ("workqueue: dump workqueues on sysrq-t")
Cc: stable@vger.kernel.org	# 4.0
Reported-by: Fabio Estevam <festevam@denx.de>
Tested-by: Fabio Estevam <festevam@denx.de>
Signed-off-by: Johan Hovold <johan@kernel.org>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-11 06:50:28 -10:00
Lai Jiangshan
d812796eb3 workqueue: Assign a color to barrier work items
There was no strong reason to or not to flush barrier work items in
flush_workqueue().  And we have to make barrier work items not participate
in nr_active so we had been using WORK_NO_COLOR for them which also makes
them can't be flushed by flush_workqueue().

And the users of flush_workqueue() often do not intend to wait barrier work
items issued by flush_work().  That made the choice sound perfect.

But barrier work items have reference to internal structure (pool_workqueue)
and the worker thread[s] is/are still busy for the workqueue user when the
barrrier work items are not done.  So it is reasonable to make flush_workqueue()
also watch for flush_work() to make it more robust.

And a problem[1] reported by Li Zhe shows that we need such robustness.
The warning logs are listed below:

WARNING: CPU: 0 PID: 19336 at kernel/workqueue.c:4430 destroy_workqueue+0x11a/0x2f0
*****
destroy_workqueue: test_workqueue9 has the following busy pwq
  pwq 4: cpus=2 node=0 flags=0x0 nice=0 active=0/1 refcnt=2
      in-flight: 5658:wq_barrier_func
Showing busy workqueues and worker pools:
*****

It shows that even after drain_workqueue() returns, the barrier work item
is still in flight and the pwq (and a worker) is still busy on it.

The problem is caused by flush_workqueue() not watching flush_work():

Thread A				Worker
					/* normal work item with linked */
					process_scheduled_works()
destroy_workqueue()			  process_one_work()
  drain_workqueue()			    /* run normal work item */
				 /--	    pwq_dec_nr_in_flight()
    flush_workqueue()	    <---/
		/* the last normal work item is done */
  sanity_check				  process_one_work()
				       /--  raw_spin_unlock_irq(&pool->lock)
    raw_spin_lock_irq(&pool->lock)  <-/     /* maybe preempt */
    *WARNING*				    wq_barrier_func()
					    /* maybe preempt by cond_resched() */

Thread A can get the pool lock after the Worker unlocks the pool lock before
running wq_barrier_func().  And if there is any preemption happen around
wq_barrier_func(), destroy_workqueue()'s sanity check is more likely to
get the lock and catch it.  (Note: preemption is not necessary to cause the bug,
the unlocking is enough to possibly trigger the WARNING.)

A simple solution might be just executing all linked barrier work items
once without releasing pool lock after the head work item's
pwq_dec_nr_in_flight().  But this solution has two problems:

  1) the head work item might also be barrier work item when the user-queued
     work item is cancelled. For example:
	thread 1:		thread 2:
	queue_work(wq, &my_work)
	flush_work(&my_work)
				cancel_work_sync(&my_work);
	/* Neiter my_work nor the barrier work is scheduled. */
				destroy_workqueue(wq);
	/* This is an easier way to catch the WARNING. */

  2) there might be too much linked barrier work items and running them
     all once without releasing pool lock just causes trouble.

The only solution is to make flush_workqueue() aslo watch barrier work
items.  So we have to assign a color to these barrier work items which
is the color of the head (user-queued) work item.

Assigning a color doesn't cause any problem in ative management, because
the prvious patch made barrier work items not participate in nr_active
via WORK_STRUCT_INACTIVE rather than reliance on the (old) WORK_NO_COLOR.

[1]: https://lore.kernel.org/lkml/20210812083814.32453-1-lizhe.67@bytedance.com/
Reported-by: Li Zhe <lizhe.67@bytedance.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-17 07:49:10 -10:00
Lai Jiangshan
018f3a13dd workqueue: Mark barrier work with WORK_STRUCT_INACTIVE
Currently, WORK_NO_COLOR has two meanings:
	Not participate in flushing
	Not participate in nr_active

And only non-barrier work items are marked with WORK_STRUCT_INACTIVE
when they are in inactive_works list.  The barrier work items are not
marked INACTIVE even linked in inactive_works list since these tail
items are always moved together with the head work item.

These definitions are simple, clean and practical. (Except a small
blemish that only the first meaning of WORK_NO_COLOR is documented in
include/linux/workqueue.h while both meanings are in workqueue.c)

But dual-purpose WORK_NO_COLOR used for barrier work items has proven to
be problematical[1].  Only the second purpose is obligatory.  So we plan
to make barrier work items participate in flushing but keep them still
not participating in nr_active.

So the plan is to mark barrier work items inactive without using
WORK_NO_COLOR in this patch so that we can assign a flushing color to
them in next patch.

The reasonable way is to add or reuse a bit in work data of the work
item.  But adding a bit will double the size of pool_workqueue.

Currently, WORK_STRUCT_INACTIVE is only used in try_to_grab_pending()
for user-queued work items and try_to_grab_pending() can't work for
barrier work items.  So we extend WORK_STRUCT_INACTIVE to also mark
barrier work items no matter which list they are in because we don't
need to determind which list a barrier work item is in.

So the meaning of WORK_STRUCT_INACTIVE becomes just "the work items don't
participate in nr_active" (no matter whether it is a barrier work item or
a user-queued work item).  And WORK_STRUCT_INACTIVE for user-queued work
items means they are in inactive_works list.

This patch does it by setting WORK_STRUCT_INACTIVE for barrier work items
in insert_wq_barrier() and checking WORK_STRUCT_INACTIVE first in
pwq_dec_nr_in_flight().  And the meaning of WORK_NO_COLOR is reduced to
only "not participating in flushing".

There is no functionality change intended in this patch.  Because
WORK_NO_COLOR+WORK_STRUCT_INACTIVE represents the previous WORK_NO_COLOR
in meaning and try_to_grab_pending() doesn't use for barrier work items
and avoids being confused by this extended WORK_STRUCT_INACTIVE.

A bunch of comment for nr_active & WORK_STRUCT_INACTIVE is also added for
documenting how WORK_STRUCT_INACTIVE works in nr_active management.

[1]: https://lore.kernel.org/lkml/20210812083814.32453-1-lizhe.67@bytedance.com/
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-17 07:49:10 -10:00
Lai Jiangshan
d21cece0db workqueue: Change the code of calculating work_flags in insert_wq_barrier()
Add a local var @work_flags to calculate work_flags step by step, so that
we don't need to squeeze several flags in only the last line of code.

Parepare for next patch to add a bit to barrier work item's flag.  Not
squshing this to next patch makes it clear that what it will have changed.

No functional change intended.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-17 07:49:10 -10:00
Lai Jiangshan
c4560c2c88 workqueue: Change arguement of pwq_dec_nr_in_flight()
Make pwq_dec_nr_in_flight() use work_data rather just work_color.

Prepare for later patch to get WORK_STRUCT_INACTIVE bit from work_data
in pwq_dec_nr_in_flight().

No functional change intended.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-17 07:49:09 -10:00
Lai Jiangshan
f97a4a1a3f workqueue: Rename "delayed" (delayed by active management) to "inactive"
There are two kinds of "delayed" work items in workqueue subsystem.

One is for timer-delayed work items which are visible to workqueue users.
The other kind is for work items delayed by active management which can
not be directly visible to workqueue users.  We mixed the word "delayed"
for both kinds and caused somewhat ambiguity.

This patch renames the later one (delayed by active management) to
"inactive", because it is used for workqueue active management and
most of its related symbols are named with "active" or "activate".

All "delayed" and "DELAYED" are carefully checked and renamed one by
one to avoid accidentally changing the name of the other kind for
timer-delayed.

No functional change intended.

Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-17 07:49:09 -10:00
Sebastian Andrzej Siewior
ffd8bea81f workqueue: Replace deprecated CPU-hotplug functions.
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().

Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.

Cc: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-09 12:33:30 -10:00
Zhen Lei
e441b56fe4 workqueue: Replace deprecated ida_simple_*() with ida_alloc()/ida_free()
Replace ida_simple_get() with ida_alloc() and ida_simple_remove() with
ida_free(), the latter is more concise and intuitive.

In addition, if ida_alloc() fails, NULL is returned directly. This
eliminates unnecessary initialization of two local variables and an 'if'
judgment.

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-09 12:32:38 -10:00
Cai Huoqing
67dc832537 workqueue: Fix typo in comments
Fix typo:
*assing  ==> assign
*alloced  ==> allocated
*Retun  ==> Return
*excute  ==> execute

v1->v2:
*reverse 'iff'
*update changelog

Signed-off-by: Cai Huoqing <caihuoqing@baidu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-09 12:31:03 -10:00
Zhen Lei
f728c4a9e8 workqueue: Fix possible memory leaks in wq_numa_init()
In error handling branch "if (WARN_ON(node == NUMA_NO_NODE))", the
previously allocated memories are not released. Doing this before
allocating memory eliminates memory leaks.

tj: Note that the condition only occurs when the arch code is pretty broken
and the WARN_ON might as well be BUG_ON().

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-07-29 07:16:00 -10:00
Yang Yingliang
b42b0bddcb workqueue: fix UAF in pwq_unbound_release_workfn()
I got a UAF report when doing fuzz test:

[  152.880091][ T8030] ==================================================================
[  152.881240][ T8030] BUG: KASAN: use-after-free in pwq_unbound_release_workfn+0x50/0x190
[  152.882442][ T8030] Read of size 4 at addr ffff88810d31bd00 by task kworker/3:2/8030
[  152.883578][ T8030]
[  152.883932][ T8030] CPU: 3 PID: 8030 Comm: kworker/3:2 Not tainted 5.13.0+ #249
[  152.885014][ T8030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[  152.886442][ T8030] Workqueue: events pwq_unbound_release_workfn
[  152.887358][ T8030] Call Trace:
[  152.887837][ T8030]  dump_stack_lvl+0x75/0x9b
[  152.888525][ T8030]  ? pwq_unbound_release_workfn+0x50/0x190
[  152.889371][ T8030]  print_address_description.constprop.10+0x48/0x70
[  152.890326][ T8030]  ? pwq_unbound_release_workfn+0x50/0x190
[  152.891163][ T8030]  ? pwq_unbound_release_workfn+0x50/0x190
[  152.891999][ T8030]  kasan_report.cold.15+0x82/0xdb
[  152.892740][ T8030]  ? pwq_unbound_release_workfn+0x50/0x190
[  152.893594][ T8030]  __asan_load4+0x69/0x90
[  152.894243][ T8030]  pwq_unbound_release_workfn+0x50/0x190
[  152.895057][ T8030]  process_one_work+0x47b/0x890
[  152.895778][ T8030]  worker_thread+0x5c/0x790
[  152.896439][ T8030]  ? process_one_work+0x890/0x890
[  152.897163][ T8030]  kthread+0x223/0x250
[  152.897747][ T8030]  ? set_kthread_struct+0xb0/0xb0
[  152.898471][ T8030]  ret_from_fork+0x1f/0x30
[  152.899114][ T8030]
[  152.899446][ T8030] Allocated by task 8884:
[  152.900084][ T8030]  kasan_save_stack+0x21/0x50
[  152.900769][ T8030]  __kasan_kmalloc+0x88/0xb0
[  152.901416][ T8030]  __kmalloc+0x29c/0x460
[  152.902014][ T8030]  alloc_workqueue+0x111/0x8e0
[  152.902690][ T8030]  __btrfs_alloc_workqueue+0x11e/0x2a0
[  152.903459][ T8030]  btrfs_alloc_workqueue+0x6d/0x1d0
[  152.904198][ T8030]  scrub_workers_get+0x1e8/0x490
[  152.904929][ T8030]  btrfs_scrub_dev+0x1b9/0x9c0
[  152.905599][ T8030]  btrfs_ioctl+0x122c/0x4e50
[  152.906247][ T8030]  __x64_sys_ioctl+0x137/0x190
[  152.906916][ T8030]  do_syscall_64+0x34/0xb0
[  152.907535][ T8030]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[  152.908365][ T8030]
[  152.908688][ T8030] Freed by task 8884:
[  152.909243][ T8030]  kasan_save_stack+0x21/0x50
[  152.909893][ T8030]  kasan_set_track+0x20/0x30
[  152.910541][ T8030]  kasan_set_free_info+0x24/0x40
[  152.911265][ T8030]  __kasan_slab_free+0xf7/0x140
[  152.911964][ T8030]  kfree+0x9e/0x3d0
[  152.912501][ T8030]  alloc_workqueue+0x7d7/0x8e0
[  152.913182][ T8030]  __btrfs_alloc_workqueue+0x11e/0x2a0
[  152.913949][ T8030]  btrfs_alloc_workqueue+0x6d/0x1d0
[  152.914703][ T8030]  scrub_workers_get+0x1e8/0x490
[  152.915402][ T8030]  btrfs_scrub_dev+0x1b9/0x9c0
[  152.916077][ T8030]  btrfs_ioctl+0x122c/0x4e50
[  152.916729][ T8030]  __x64_sys_ioctl+0x137/0x190
[  152.917414][ T8030]  do_syscall_64+0x34/0xb0
[  152.918034][ T8030]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[  152.918872][ T8030]
[  152.919203][ T8030] The buggy address belongs to the object at ffff88810d31bc00
[  152.919203][ T8030]  which belongs to the cache kmalloc-512 of size 512
[  152.921155][ T8030] The buggy address is located 256 bytes inside of
[  152.921155][ T8030]  512-byte region [ffff88810d31bc00, ffff88810d31be00)
[  152.922993][ T8030] The buggy address belongs to the page:
[  152.923800][ T8030] page:ffffea000434c600 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10d318
[  152.925249][ T8030] head:ffffea000434c600 order:2 compound_mapcount:0 compound_pincount:0
[  152.926399][ T8030] flags: 0x57ff00000010200(slab|head|node=1|zone=2|lastcpupid=0x7ff)
[  152.927515][ T8030] raw: 057ff00000010200 dead000000000100 dead000000000122 ffff888009c42c80
[  152.928716][ T8030] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
[  152.929890][ T8030] page dumped because: kasan: bad access detected
[  152.930759][ T8030]
[  152.931076][ T8030] Memory state around the buggy address:
[  152.931851][ T8030]  ffff88810d31bc00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[  152.932967][ T8030]  ffff88810d31bc80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[  152.934068][ T8030] >ffff88810d31bd00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[  152.935189][ T8030]                    ^
[  152.935763][ T8030]  ffff88810d31bd80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[  152.936847][ T8030]  ffff88810d31be00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[  152.937940][ T8030] ==================================================================

If apply_wqattrs_prepare() fails in alloc_workqueue(), it will call put_pwq()
which invoke a work queue to call pwq_unbound_release_workfn() and use the 'wq'.
The 'wq' allocated in alloc_workqueue() will be freed in error path when
apply_wqattrs_prepare() fails. So it will lead a UAF.

CPU0                                          CPU1
alloc_workqueue()
alloc_and_link_pwqs()
apply_wqattrs_prepare() fails
apply_wqattrs_cleanup()
schedule_work(&pwq->unbound_release_work)
kfree(wq)
                                              worker_thread()
                                              pwq_unbound_release_workfn() <- trigger uaf here

If apply_wqattrs_prepare() fails, the new pwq are not linked, it doesn't
hold any reference to the 'wq', 'wq' is invalid to access in the worker,
so add check pwq if linked to fix this.

Fixes: 2d5f0764b5 ("workqueue: split apply_workqueue_attrs() into 3 stages")
Cc: stable@vger.kernel.org # v4.2+
Reported-by: Hulk Robot <hulkci@huawei.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Tested-by: Pavel Skripkin <paskripkin@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-07-21 06:42:31 -10:00