The ww-mutex selftest operates directly on ww_mutex::base and assumes
its type is struct mutex. This isn't true on PREEMPT_RT which turns the
mutex into a rtmutex.
Add a ww_mutex_base_ abstraction which maps to the relevant mutex_ or
rt_mutex_ function.
Change the CONFIG_DEBUG_MUTEXES ifdef to DEBUG_WW_MUTEXES. The latter is
true for the MUTEX and RTMUTEX implementation of WW-MUTEX. The
assignment is required in order to pass the tests.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-10-bigeasy@linutronix.de
The softirq context on PREEMPT_RT is different compared to !PREEMPT_RT.
As such lockdep_softirq_enter() is a nop and the all the "softirq safe"
tests fail on PREEMPT_RT because there is no difference.
Skip the softirq context tests on PREEMPT_RT.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-9-bigeasy@linutronix.de
The tests with unbalanced lock() + unlock() operation leave a modified
preemption counter behind which is then reset to its original value
after the test.
The spin_lock() function on PREEMPT_RT does not include a
preempt_disable() statement but migrate_disable() and read_rcu_lock().
As a consequence both counter never get back to their original value
and the system explodes later after the selftest. In the
double-unlock case on PREEMPT_RT, the migrate_disable() and RCU code
will trigger a warning which should be avoided. These counter should
not be decremented below their initial value.
Save both counters and bring them back to their original value after
the test. In the double-unlock case, increment both counter in
advance to they become balanced after the double unlock.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-8-bigeasy@linutronix.de
i915 will soon gain an eviction path that trylock a whole lot of locks
for eviction, getting dmesg failures like below:
BUG: MAX_LOCK_DEPTH too low!
turning off the locking correctness validator.
depth: 48 max: 48!
48 locks held by i915_selftest/5776:
#0: ffff888101a79240 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x88/0x160
#1: ffffc900009778c0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: i915_vma_pin.constprop.63+0x39/0x1b0 [i915]
#2: ffff88800cf74de8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.63+0x5f/0x1b0 [i915]
#3: ffff88810c7f9e38 (&vm->mutex/1){+.+.}-{3:3}, at: i915_vma_pin_ww+0x1c4/0x9d0 [i915]
#4: ffff88810bad5768 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
#5: ffff88810bad60e8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
...
#46: ffff88811964d768 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
#47: ffff88811964e0e8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_gem_evict_something+0x110/0x860 [i915]
INFO: lockdep is turned off.
Fixing eviction to nest into ww_class_acquire is a high priority, but
it requires a rework of the entire driver, which can only be done one
step at a time.
As an intermediate solution, add an acquire context to
ww_mutex_trylock, which allows us to do proper nesting annotations on
the trylocks, making the above lockdep splat disappear.
This is also useful in regulator_lock_nested, which may avoid dropping
regulator_nesting_mutex in the uncontended path, so use it there.
TTM may be another user for this, where we could lock a buffer in a
fastpath with list locks held, without dropping all locks we hold.
[peterz: rework actual ww_mutex_trylock() implementations]
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YUBGPdDDjKlxAuXJ@hirez.programming.kicks-ass.net
When PROVE_RAW_LOCK_NESTING=y many of the selftests FAILED because
HARDIRQ context is out-of-bounds for spinlocks. Instead make the
default hardware context the threaded hardirq context, which preserves
the old locking rules.
The wait-type specific locking selftests will have a non-threaded
HARDIRQ variant.
Fixes: de8f5e4f2d ("lockdep: Introduce wait-type checks")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joerg Roedel <jroedel@suse.de>
Link: https://lore.kernel.org/r/20210617190313.322096283@infradead.org
These tests are added for two purposes:
* Test the implementation of wait context checks and related
annotations.
* Semi-document the rules for wait context nesting when
PROVE_RAW_LOCK_NESTING=y.
The test cases are only avaible for PROVE_RAW_LOCK_NESTING=y, as wait
context checking makes more sense for that configuration.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201208103112.2838119-5-boqun.feng@gmail.com
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
The selftest nests rwlock_t inside raw_spinlock_t, this is invalid.
Reported-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Add two self test cases for the following case:
P0: P1: P2:
<in irq handler>
spin_lock_irq(&slock) read_lock(&rwlock)
write_lock_irq(&rwlock)
read_lock(&rwlock) spin_lock(&slock)
, which is a deadlock, as the read_lock() on P0 cannot get the lock
because of the fairness.
P0: P1: P2:
<in irq handler>
spin_lock(&slock) read_lock(&rwlock)
write_lock(&rwlock)
read_lock(&rwlock) spin_lock_irq(&slock)
, which is not a deadlock, as the read_lock() on P0 can get the lock
because it could use the unfair fastpass.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200807074238.1632519-19-boqun.feng@gmail.com
Add those four test cases:
1. X --(ER)--> Y --(ER)--> Z --(ER)--> X is deadlock.
2. X --(EN)--> Y --(SR)--> Z --(ER)--> X is deadlock.
3. X --(EN)--> Y --(SR)--> Z --(SN)--> X is not deadlock.
4. X --(ER)--> Y --(SR)--> Z --(EN)--> X is not deadlock.
Those self testcases are valuable for the development of supporting
recursive read related deadlock detection.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200807074238.1632519-17-boqun.feng@gmail.com
As our chain cache doesn't differ read/write locks, so even we can
detect a read-lock/lock-write deadlock in check_noncircular(), we can
still be fooled if a read-lock/lock-read case(which is not a deadlock)
comes first.
So introduce this test case to test specific to the chain cache behavior
on detecting recursive read lock related deadlocks.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200807074238.1632519-14-boqun.feng@gmail.com
On the archs using QUEUED_RWLOCKS, read_lock() is not always a recursive
read lock, actually it's only recursive if in_interrupt() is true. So
change the annotation accordingly to catch more deadlocks.
Note we used to treat read_lock() as pure recursive read locks in
lib/locking-seftest.c, and this is useful, especially for the lockdep
development selftest, so we keep this via a variable to force switching
lock annotation for read_lock().
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200807074238.1632519-2-boqun.feng@gmail.com
The current Wound-Wait mutex algorithm is actually not Wound-Wait but
Wait-Die. Implement also Wound-Wait as a per-ww-class choice. Wound-Wait
is, contrary to Wait-Die a preemptive algorithm and is known to generate
fewer backoffs. Testing reveals that this is true if the
number of simultaneous contending transactions is small.
As the number of simultaneous contending threads increases, Wait-Wound
becomes inferior to Wait-Die in terms of elapsed time.
Possibly due to the larger number of held locks of sleeping transactions.
Update documentation and callers.
Timings using git://people.freedesktop.org/~thomash/ww_mutex_test
tag patch-18-06-15
Each thread runs 100000 batches of lock / unlock 800 ww mutexes randomly
chosen out of 100000. Four core Intel x86_64:
Algorithm #threads Rollbacks time
Wound-Wait 4 ~100 ~17s.
Wait-Die 4 ~150000 ~19s.
Wound-Wait 16 ~360000 ~109s.
Wait-Die 16 ~450000 ~82s.
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Sean Paul <seanpaul@chromium.org>
Cc: David Airlie <airlied@linux.ie>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linux-doc@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: linaro-mm-sig@lists.linaro.org
Co-authored-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>