commit 28aabffae6be54284869a91cd8bccd3720041129 upstream.
When an application uses SQPOLL, it must wait for the SQPOLL thread to
consume SQE entries, if it fails to get an sqe when calling
io_uring_get_sqe(). It can do so by calling io_uring_enter(2) with the
flag value of IORING_ENTER_SQ_WAIT. In liburing, this is generally done
with io_uring_sqring_wait(). There's a natural expectation that once
this call returns, a new SQE entry can be retrieved, filled out, and
submitted. However, the kernel uses the cached sq head to determine if
the SQRING is full or not. If the SQPOLL thread is currently in the
process of submitting SQE entries, it may have updated the cached sq
head, but not yet committed it to the SQ ring. Hence the kernel may find
that there are SQE entries ready to be consumed, and return successfully
to the application. If the SQPOLL thread hasn't yet committed the SQ
ring entries by the time the application returns to userspace and
attempts to get a new SQE, it will fail getting a new SQE.
Fix this by having io_sqring_full() always use the user visible SQ ring
head entry, rather than the internally cached one.
Cc: stable@vger.kernel.org # 5.10+
Link: https://github.com/axboe/liburing/discussions/1267
Reported-by: Benedek Thaler <thaler@thaler.hu>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit eac2ca2d682f94f46b1973bdf5e77d85d77b8e53 ]
In terms of normal application usage, this list will always be empty.
And if an application does overflow a bit, it'll have a few entries.
However, nothing obviously prevents syzbot from running a test case
that generates a ton of overflow entries, and then flushing them can
take quite a while.
Check for needing to reschedule while flushing, and drop our locks and
do so if necessary. There's no state to maintain here as overflows
always prune from head-of-list, hence it's fine to drop and reacquire
the locks at the end of the loop.
Link: https://lore.kernel.org/io-uring/66ed061d.050a0220.29194.0053.GAE@google.com/
Reported-by: syzbot+5fca234bd7eb378ff78e@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c314094cb4cfa6fc5a17f4881ead2dfebfa717a7 ]
If the recv returns zero, or an error, then it doesn't matter if more
data has already been received for this buffer. A condition like that
should terminate the multishot receive. Rather than pass in the
collected return value, pass in whether to terminate or keep the recv
going separately.
Note that this isn't a bug right now, as the only way to get there is
via setting MSG_WAITALL with multishot receive. And if an application
does that, then -EINVAL is returned anyway. But it seems like an easy
bug to introduce, so let's make it a bit more explicit.
Link: https://github.com/axboe/liburing/issues/1246
Cc: stable@vger.kernel.org
Fixes: b3fdea6ecb ("io_uring: multishot recv")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a09c17240bdf2e9fa6d0591afa9448b59785f7d4 upstream.
A recent commit ensured that SQPOLL cannot be setup with a CPU that
isn't in the current tasks cpuset, but it also dropped testing whether
the CPU is valid in the first place. Without that, if a task passes in
a CPU value that is too high, the following KASAN splat can get
triggered:
BUG: KASAN: stack-out-of-bounds in io_sq_offload_create+0x858/0xaa4
Read of size 8 at addr ffff800089bc7b90 by task wq-aff.t/1391
CPU: 4 UID: 1000 PID: 1391 Comm: wq-aff.t Not tainted 6.11.0-rc7-00227-g371c468f4db6 #7080
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace.part.0+0xcc/0xe0
show_stack+0x14/0x1c
dump_stack_lvl+0x58/0x74
print_report+0x16c/0x4c8
kasan_report+0x9c/0xe4
__asan_report_load8_noabort+0x1c/0x24
io_sq_offload_create+0x858/0xaa4
io_uring_setup+0x1394/0x17c4
__arm64_sys_io_uring_setup+0x6c/0x180
invoke_syscall+0x6c/0x260
el0_svc_common.constprop.0+0x158/0x224
do_el0_svc+0x3c/0x5c
el0_svc+0x34/0x70
el0t_64_sync_handler+0x118/0x124
el0t_64_sync+0x168/0x16c
The buggy address belongs to stack of task wq-aff.t/1391
and is located at offset 48 in frame:
io_sq_offload_create+0x0/0xaa4
This frame has 1 object:
[32, 40) 'allowed_mask'
The buggy address belongs to the virtual mapping at
[ffff800089bc0000, ffff800089bc9000) created by:
kernel_clone+0x124/0x7e0
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff0000d740af80 pfn:0x11740a
memcg:ffff0000c2706f02
flags: 0xbffe00000000000(node=0|zone=2|lastcpupid=0x1fff)
raw: 0bffe00000000000 0000000000000000 dead000000000122 0000000000000000
raw: ffff0000d740af80 0000000000000000 00000001ffffffff ffff0000c2706f02
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff800089bc7a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff800089bc7b00: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
>ffff800089bc7b80: 00 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
^
ffff800089bc7c00: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
ffff800089bc7c80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f3
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202409161632.cbeeca0d-lkp@intel.com
Fixes: f011c9cf04c0 ("io_uring/sqpoll: do not allow pinning outside of cpuset")
Tested-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 84eacf177faa605853c58e5b1c0d9544b88c16fd upstream.
The io worker threads are userland threads that just never exit to the
userland. By that, they are also assigned to a cgroup (the group of the
creating task).
When creating a new io worker, this worker should inherit the cpuset
of the cgroup.
Fixes: da64d6db3bd3 ("io_uring: One wqe per wq")
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Link: https://lore.kernel.org/r/20240910171157.166423-3-felix.moessbauer@siemens.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0997aa5497c714edbb349ca366d28bd550ba3408 upstream.
The io worker threads are userland threads that just never exit to the
userland. By that, they are also assigned to a cgroup (the group of the
creating task).
When changing the affinity of the io_wq thread via syscall, we must only
allow cpumasks within the limits defined by the cpuset controller of the
cgroup (if enabled).
Fixes: da64d6db3bd3 ("io_uring: One wqe per wq")
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Link: https://lore.kernel.org/r/20240910171157.166423-2-felix.moessbauer@siemens.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f011c9cf04c06f16b24f583d313d3c012e589e50 upstream.
The submit queue polling threads are userland threads that just never
exit to the userland. When creating the thread with IORING_SETUP_SQ_AFF,
the affinity of the poller thread is set to the cpu specified in
sq_thread_cpu. However, this CPU can be outside of the cpuset defined
by the cgroup cpuset controller. This violates the rules defined by the
cpuset controller and is a potential issue for realtime applications.
In b7ed6d8ffd6 we fixed the default affinity of the poller thread, in
case no explicit pinning is required by inheriting the one of the
creating task. In case of explicit pinning, the check is more
complicated, as also a cpu outside of the parent cpumask is allowed.
We implemented this by using cpuset_cpus_allowed (that has support for
cgroup cpusets) and testing if the requested cpu is in the set.
Fixes: 37d1e2e364 ("io_uring: move SQPOLL thread io-wq forked worker")
Cc: stable@vger.kernel.org # 6.1+
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Link: https://lore.kernel.org/r/20240909150036.55921-1-felix.moessbauer@siemens.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 01e68ce08a30db3d842ce7a55f7f6e0474a55f9a upstream.
Every now and then reports come in that are puzzled on why changing
affinity on the io-wq workers fails with EINVAL. This happens because they
set PF_NO_SETAFFINITY as part of their creation, as io-wq organizes
workers into groups based on what CPU they are running on.
However, this is purely an optimization and not a functional requirement.
We can allow setting affinity, and just lazily update our worker to wqe
mappings. If a given io-wq thread times out, it normally exits if there's
no more work to do. The exception is if it's the last worker available.
For the timeout case, check the affinity of the worker against group mask
and exit even if it's the last worker. New workers should be created with
the right mask and in the right location.
Reported-by:Daniel Dao <dqminh@cloudflare.com>
Link: https://lore.kernel.org/io-uring/CA+wXwBQwgxB3_UphSny-yAP5b26meeOu1W4TwYVcD_+5gOhvPw@mail.gmail.com/
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0453aad676ff99787124b9b3af4a5f59fbe808e2 upstream.
If io-wq worker creation fails, we retry it by queueing up a task_work.
tasK_work is needed because it should be done from the user process
context. The problem is that retries are not limited, and if queueing a
task_work is the reason for the failure, we might get into an infinite
loop.
It doesn't seem to happen now but it would with the following patch
executing task_work in the freezer's loop. For now, arbitrarily limit the
number of attempts to create a worker.
Cc: stable@vger.kernel.org
Fixes: 3146cba99a ("io-wq: make worker creation resilient against signals")
Reported-by: Julian Orth <ju.orth@gmail.com>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/8280436925db88448c7c85c6656edee1a43029ea.1720634146.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f8b632e89a101dae349a7b212c1771d7925f441b upstream.
io_uring_cancel_generic() should retry if any state changes like a
request is completed, however in case of a task exit it only goes for
another loop and avoids schedule() if any tracked (i.e. REQ_F_INFLIGHT)
request got completed.
Let's assume we have a non-tracked request executing in iowq and a
tracked request linked to it. Let's also assume
io_uring_cancel_generic() fails to find and cancel the request, i.e.
via io_run_local_work(), which may happen as io-wq has gaps.
Next, the request logically completes, io-wq still hold a ref but queues
it for completion via tw, which happens in
io_uring_try_cancel_requests(). After, right before prepare_to_wait()
io-wq puts the request, grabs the linked one and tries executes it, e.g.
arms polling. Finally the cancellation loop calls prepare_to_wait(),
there are no tw to run, no tracked request was completed, so the
tctx_inflight() check passes and the task is put to indefinite sleep.
Cc: stable@vger.kernel.org
Fixes: 3f48cf18f8 ("io_uring: unify files and task cancel")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/acac7311f4e02ce3c43293f8f1fda9c705d158f1.1721819383.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c4ce0ab27646f4206a9eb502d6fe45cb080e1cae ]
kmemleak complains that there's a memory leak related to connect
handling:
unreferenced object 0xffff0001093bdf00 (size 128):
comm "iou-sqp-455", pid 457, jiffies 4294894164
hex dump (first 32 bytes):
02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 2e481b1a):
[<00000000c0a26af4>] kmemleak_alloc+0x30/0x38
[<000000009c30bb45>] kmalloc_trace+0x228/0x358
[<000000009da9d39f>] __audit_sockaddr+0xd0/0x138
[<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8
[<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4
[<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48
[<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4
[<00000000d999b491>] ret_from_fork+0x10/0x20
which can can happen if:
1) The command type does something on the prep side that triggers an
audit call.
2) The thread hasn't done any operations before this that triggered
an audit call inside ->issue(), where we have audit_uring_entry()
and audit_uring_exit().
Work around this by issuing a blanket NOP operation before the SQPOLL
does anything.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 22537c9f79417fed70b352d54d01d2586fee9521 ]
io_task_work_pending() uses wq_list_empty() on ctx->work_llist, but it's
not an io_wq_work_list, it's a struct llist_head. They both have
->first as head-of-list, and it turns out the checks are identical. But
be proper and use the right helper.
Fixes: dac6a0eae7 ("io_uring: ensure iopoll runs local task work as well")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6434ec0186b80c734aa7a2acf95f75f5c6dd943b ]
Use task_work_pending() as a better test for whether we have task_work
or not, TIF_NOTIFY_SIGNAL is only valid if the any of the task_work
items had been queued with TWA_SIGNAL as the notification mechanism.
Hence task_work_pending() is a more reliable check.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Stable-dep-of: 22537c9f7941 ("io_uring: use the right type for work_llist empty check")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3d8f874bd620ce03f75a5512847586828ab86544 upstream.
The NOP op flags should have been checked from beginning like any other
opcode, otherwise NOP may not be extended with the op flags.
Given both liburing and Rust io-uring crate always zeros SQE op flags, just
ignore users which play raw NOP uring interface without zeroing SQE, because
NOP is just for test purpose. Then we can save one NOP2 opcode.
Suggested-by: Jens Axboe <axboe@kernel.dk>
Fixes: 2b188cc1bb ("Add io_uring IO interface")
Cc: stable@vger.kernel.org
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20240510035031.78874-2-ming.lei@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e21e1c45e1fe2e31732f40256b49c04e76a17cee ]
If failure happens before the opcode prep handler is called, ensure that
we clear the opcode specific area of the request, which holds data
specific to that request type. This prevents errors where opcode
handlers either don't get to clear per-request private data since prep
isn't even called.
Reported-and-tested-by: syzbot+f8e9a371388aa62ecab4@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit deaef31bc1ec7966698a427da8c161930830e1cf ]
If we loop for multishot receive on the initial attempt, and then abort
later on to wait for more, we miss a case where we should be copying the
io_async_msghdr from the stack to stable storage. This leads to the next
retry potentially failing, if the application had the msghdr on the
stack.
Cc: stable@vger.kernel.org
Fixes: 9bb66906f2 ("io_uring: support multishot in recvmsg")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8ede3db5061bb1fe28e2c9683329aafa89d2b1b4 ]
The "controllen" variable is type size_t (unsigned long). Casting it
to int could lead to an integer underflow.
The check_add_overflow() function considers the type of the destination
which is type int. If we add two positive values and the result cannot
fit in an integer then that's counted as an overflow.
However, if we cast "controllen" to an int and it turns negative, then
negative values *can* fit into an int type so there is no overflow.
Good: 100 + (unsigned long)-4 = 96 <-- overflow
Bad: 100 + (int)-4 = 96 <-- no overflow
I deleted the cast of the sizeof() as well. That's not a bug but the
cast is unnecessary.
Fixes: 9b0fc3c054 ("io_uring: fix types in io_recvmsg_multishot_overflow")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Link: https://lore.kernel.org/r/138bd2e2-ede8-4bcc-aa7b-f3d9de167a37@moroto.mountain
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c55978024d123d43808ab393a0a4ce3ce8568150 ]
Move the actual user_msghdr / compat_msghdr into the send and receive
sides, respectively, so we can move the uaddr receive handling into its
own handler, and ditto the multishot with buffer selection logic.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Stable-dep-of: 8ede3db5061b ("io_uring/net: fix overflow check in io_recvmsg_mshot_prep()")
Signed-off-by: Sasha Levin <sashal@kernel.org>