[ Upstream commit 5a830bbce3af16833fe0092dec47b6dd30279825 ]
The hrtimer function callback must not be NULL. It has to be specified by
the call side but it is not validated by the hrtimer code. When a hrtimer
is queued without a function callback, the kernel crashes with a null
pointer dereference when trying to execute the callback in __run_hrtimer().
Introduce a validation before queuing the hrtimer in
hrtimer_start_range_ns().
[anna-maria: Rephrase commit message]
Signed-off-by: Phil Chang <phil.chang@mediatek.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0c52310f260014d95c1310364379772cb74cf82d upstream.
While in theory the timer can be triggered before expires + delta, for the
cases of RT tasks they really have no business giving any lenience for
extra slack time, so override any passed value by the user and always use
zero for schedule_hrtimeout_range() calls. Furthermore, this is similar to
what the nanosleep(2) family already does with current->timer_slack_ns.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230123173206.6764-3-dave@stgolabs.net
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dad6a09f3148257ac1773cd90934d721d68ab595 upstream.
The hrtimers migration on CPU-down hotplug process has been moved
earlier, before the CPU actually goes to die. This leaves a small window
of opportunity to queue an hrtimer in a blind spot, leaving it ignored.
For example a practical case has been reported with RCU waking up a
SCHED_FIFO task right before the CPUHP_AP_IDLE_DEAD stage, queuing that
way a sched/rt timer to the local offline CPU.
Make sure such situations never go unnoticed and warn when that happens.
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240129235646.3171983-4-boqun.feng@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5c0930ccaad5a74d74e8b18b648c5eb21ed2fe94 ]
2b8272ff4a70 ("cpu/hotplug: Prevent self deadlock on CPU hot-unplug")
solved the straight forward CPU hotplug deadlock vs. the scheduler
bandwidth timer. Yu discovered a more involved variant where a task which
has a bandwidth timer started on the outgoing CPU holds a lock and then
gets throttled. If the lock required by one of the CPU hotplug callbacks
the hotplug operation deadlocks because the unthrottling timer event is not
handled on the dying CPU and can only be recovered once the control CPU
reaches the hotplug state which pulls the pending hrtimers from the dead
CPU.
Solve this by pushing the hrtimers away from the dying CPU in the dying
callbacks. Nothing can queue a hrtimer on the dying CPU at that point because
all other CPUs spin in stop_machine() with interrupts disabled and once the
operation is finished the CPU is marked offline.
Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Liu Tie <liutie4@huawei.com>
Link: https://lore.kernel.org/r/87a5rphara.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9f76d59173d9d146e96c66886b671c1915a5c5e5 ]
The nanosleep syscalls use the restart_block mechanism, with a quirk:
The `type` and `rmtp`/`compat_rmtp` fields are set up unconditionally on
syscall entry, while the rest of the restart_block is only set up in the
unlikely case that the syscall is actually interrupted by a signal (or
pseudo-signal) that doesn't have a signal handler.
If the restart_block was set up by a previous syscall (futex(...,
FUTEX_WAIT, ...) or poll()) and hasn't been invalidated somehow since then,
this will clobber some of the union fields used by futex_wait_restart() and
do_restart_poll().
If userspace afterwards wrongly calls the restart_syscall syscall,
futex_wait_restart()/do_restart_poll() will read struct fields that have
been clobbered.
This doesn't actually lead to anything particularly interesting because
none of the union fields contain trusted kernel data, and
futex(..., FUTEX_WAIT, ...) and poll() aren't syscalls where it makes much
sense to apply seccomp filters to their arguments.
So the current consequences are just of the "if userspace does bad stuff,
it can damage itself, and that's not a problem" flavor.
But still, it seems like a hazard for future developers, so invalidate the
restart_block when partly setting it up in the nanosleep syscalls.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230105134403.754986-1-jannh@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.
By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.
As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).
Specifically; the current scheme works a little like:
freezer_do_not_count();
schedule();
freezer_count();
And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.
However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.
That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.
This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.
As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:
TASK_FREEZABLE -> TASK_FROZEN
__TASK_STOPPED -> TASK_FROZEN
__TASK_TRACED -> TASK_FROZEN
The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).
The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.
With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
Using msleep() is problematic because it's compared against
ratelimiter.c's ktime_get_coarse_boottime_ns(), which means on systems
with slow jiffies (such as UML's forced HZ=100), the result is
inaccurate. So switch to using schedule_hrtimeout().
However, hrtimer gives us access only to the traditional posix timers,
and none of the _COARSE variants. So now, rather than being too
imprecise like jiffies, it's too precise.
One solution would be to give it a large "range" value, but this will
still fire early on a loaded system. A better solution is to align the
timeout to the actual coarse timer, and then round up to the nearest
tick, plus change.
So add the timeout to the current coarse time, and then
schedule_hrtimer() until the absolute computed time.
This should hopefully reduce flakes in CI as well. Note that we keep the
retry loop in case the entire function is running behind, because the
test could still be scheduled out, by either the kernel or by the
hypervisor's kernel, in which case restarting the test and hoping to not
be scheduled out still helps.
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since the recent consoliation of reprogramming functions,
hrtimer_force_reprogram() is affected by a check whether the new expiry
time is past the current expiry time.
This breaks the NOHZ logic as that relies on the fact that the tick hrtimer
is moved into the future. That means cpu_base->expires_next becomes stale
and subsequent reprogramming attempts fail as well until the situation is
cleaned up by an hrtimer interrupts.
For some yet unknown reason this leads to a complete stall, so for now
partially revert the offending commit to a known working state. The root
cause for the stall is still investigated and will be fixed in a subsequent
commit.
Fixes: b14bca97c9 ("hrtimer: Consolidate reprogramming code")
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lore.kernel.org/r/8735recskh.ffs@tglx
clock_was_set() can be invoked from preemptible context. Use raw_cpu_ptr()
to check whether high resolution mode is active or not. It does not matter
whether the task migrates after acquiring the pointer.
Fixes: e71a4153b7 ("hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case")
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/875ywacsmb.ffs@tglx
By unconditionally updating the offsets there are more indicators
whether the SMP function calls on clock_was_set() can be avoided:
- When the offset update already happened on the remote CPU then the
remote update attempt will yield the same seqeuence number and no
IPI is required.
- When the remote CPU is currently handling hrtimer_interrupt(). In
that case the remote CPU will reevaluate the timer bases before
reprogramming anyway, so nothing to do.
- After updating it can be checked whether the first expiring timer in
the affected clock bases moves before the first expiring (softirq)
timer of the CPU. If that's not the case then sending the IPI is not
required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.887322464@linutronix.de
Setting of clocks triggers an unconditional SMP function call on all online
CPUs to reprogram the clock event device.
However, only some clocks have their offsets updated and therefore
potentially require a reprogram. That's CLOCK_REALTIME and CLOCK_TAI and in
the case of resume (delayed sleep time injection) also CLOCK_BOOTTIME.
Instead of sending an IPI unconditionally, check each per CPU hrtimer base
whether it has active timers in the affected clock bases which are
indicated by the caller in the @bases argument of clock_was_set().
If that's not the case, skip the IPI and update the offsets remotely which
ensures that any subsequently armed timers on the affected clocks are
evaluated with the correct offsets.
[ tglx: Adopted to the new bases argument, removed the softirq_active
check, added comment, fixed up stale comment ]
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.787536542@linutronix.de
clock_was_set() unconditionaly invokes retrigger_next_event() on all online
CPUs. This was necessary because that mechanism was also used for resume
from suspend to idle which is not longer the case.
The bases arguments allows the callers of clock_was_set() to hand in a mask
which tells clock_was_set() which of the hrtimer clock bases are affected
by the clock setting. This mask will be used in the next step to check
whether a CPU base has timers queued on a clock base affected by the event
and avoid the SMP function call if there are none.
Add a @bases argument, provide defines for the active bases masking and
fixup all callsites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.691083465@linutronix.de
Resuming timekeeping is a clock-was-set event and uses the clock-was-set
notification mechanism. This is in the way of making the clock-was-set
update for hrtimers selective so unnecessary IPIs are avoided when a CPU
base does not have timers queued which are affected by the clock setting.
Distangle it by invoking hrtimer_resume() on each unfreezing CPU and invoke
the new timerfd_resume() function from timekeeping_resume() which is the
only place where this is needed.
Rename hrtimer_resume() to hrtimer_resume_local() to reflect the change.
With this the clock_was_set*() functions are not longer required to IPI all
CPUs unconditionally and can get some smarts to avoid them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.488853478@linutronix.de
When CONFIG_HIGH_RES_TIMERS is disabled, but NOHZ is enabled then
clock_was_set() is not doing anything. With HIGHRES=n the kernel relies on
the periodic tick to update the clock offsets, but when NOHZ is enabled and
active then CPUs which are in a deep idle sleep do not have a periodic tick
which means the expiry of timers affected by clock_was_set() can be
arbitrarily delayed up to the point where the CPUs are brought out of idle
again.
Make the clock_was_set() logic unconditionaly available so that idle CPUs
are kicked out of idle to handle the update.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.288697903@linutronix.de
If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.
Make clock_was_set_delayed() unconditially available to fix that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then
the timer has to be canceled first and then added back. If the timer is the
first expiring timer then on removal the clockevent device is reprogrammed
to the next expiring timer to avoid that the pending expiry fires needlessly.
If the new expiry time ends up to be the first expiry again then the clock
event device has to reprogrammed again.
Avoid this by checking whether the timer is the first to expire and in that
case, keep the timer on the current CPU and delay the reprogramming up to
the point where the timer has been enqueued again.
Reported-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
Pull timer updates from Thomas Gleixner:
"The time and timers updates contain:
Core changes:
- Allow runtime power management when the clocksource is changed.
- A correctness fix for clock_adjtime32() so that the return value on
success is not overwritten by the result of the copy to user.
- Allow late installment of broadcast clockevent devices which was
broken because nothing switched them over to oneshot mode. This
went unnoticed so far because clockevent devices used to be built
in, but now people started to make them modular.
- Debugfs related simplifications
- Small cleanups and improvements here and there
Driver changes:
- The usual set of device tree binding updates for a wide range of
drivers/devices.
- The usual updates and improvements for drivers all over the place
but nothing outstanding.
- No new clocksource/event drivers. They'll come back next time"
* tag 'timers-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
posix-timers: Preserve return value in clock_adjtime32()
tick/broadcast: Allow late registered device to enter oneshot mode
tick: Use tick_check_replacement() instead of open coding it
time/timecounter: Mark 1st argument of timecounter_cyc2time() as const
dt-bindings: timer: nuvoton,npcm7xx: Add wpcm450-timer
clocksource/drivers/arm_arch_timer: Add __ro_after_init and __init
clocksource/drivers/timer-ti-dm: Handle dra7 timer wrap errata i940
clocksource/drivers/timer-ti-dm: Prepare to handle dra7 timer wrap issue
clocksource/drivers/dw_apb_timer_of: Add handling for potential memory leak
clocksource/drivers/npcm: Add support for WPCM450
clocksource/drivers/sh_cmt: Don't use CMTOUT_IE with R-Car Gen2/3
clocksource/drivers/pistachio: Fix trivial typo
clocksource/drivers/ingenic_ost: Fix return value check in ingenic_ost_probe()
clocksource/drivers/timer-ti-dm: Add missing set_state_oneshot_stopped
clocksource/drivers/timer-ti-dm: Fix posted mode status check order
dt-bindings: timer: renesas,cmt: Document R8A77961
dt-bindings: timer: renesas,cmt: Add r8a779a0 CMT support
clocksource/drivers/ingenic-ost: Add support for the JZ4760B
clocksource/drivers/ingenic: Add support for the JZ4760
dt-bindings: timer: ingenic: Add compatible strings for JZ4760(B)
...
hrtimer_force_reprogram() and hrtimer_interrupt() invokes
__hrtimer_get_next_event() to find the earliest expiry time of hrtimer
bases. __hrtimer_get_next_event() does not update
cpu_base::[softirq_]_expires_next to preserve reprogramming logic. That
needs to be done at the callsites.
hrtimer_force_reprogram() updates cpu_base::softirq_expires_next only when
the first expiring timer is a softirq timer and the soft interrupt is not
activated. That's wrong because cpu_base::softirq_expires_next is left
stale when the first expiring timer of all bases is a timer which expires
in hard interrupt context. hrtimer_interrupt() does never update
cpu_base::softirq_expires_next which is wrong too.
That becomes a problem when clock_settime() sets CLOCK_REALTIME forward and
the first soft expiring timer is in the CLOCK_REALTIME_SOFT base. Setting
CLOCK_REALTIME forward moves the clock MONOTONIC based expiry time of that
timer before the stale cpu_base::softirq_expires_next.
cpu_base::softirq_expires_next is cached to make the check for raising the
soft interrupt fast. In the above case the soft interrupt won't be raised
until clock monotonic reaches the stale cpu_base::softirq_expires_next
value. That's incorrect, but what's worse it that if the softirq timer
becomes the first expiring timer of all clock bases after the hard expiry
timer has been handled the reprogramming of the clockevent from
hrtimer_interrupt() will result in an interrupt storm. That happens because
the reprogramming does not use cpu_base::softirq_expires_next, it uses
__hrtimer_get_next_event() which returns the actual expiry time. Once clock
MONOTONIC reaches cpu_base::softirq_expires_next the soft interrupt is
raised and the storm subsides.
Change the logic in hrtimer_force_reprogram() to evaluate the soft and hard
bases seperately, update softirq_expires_next and handle the case when a
soft expiring timer is the first of all bases by comparing the expiry times
and updating the required cpu base fields. Split this functionality into a
separate function to be able to use it in hrtimer_interrupt() as well
without copy paste.
Fixes: 5da7016046 ("hrtimer: Implement support for softirq based hrtimers")
Reported-by: Mikael Beckius <mikael.beckius@windriver.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikael Beckius <mikael.beckius@windriver.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210223160240.27518-1-anna-maria@linutronix.de
Pull timers and timekeeping updates from Thomas Gleixner:
"Core:
- Robustness improvements for the NOHZ tick management
- Fixes and consolidation of the NTP/RTC synchronization code
- Small fixes and improvements in various places
- A set of function documentation udpates and fixes
Drivers:
- Cleanups and improvements in various clocksoure/event drivers
- Removal of the EZChip NPS clocksource driver as the platfrom
support was removed from ARC
- The usual set of new device tree binding and json conversions
- The RTC driver which have been acked by the RTC maintainer:
* fix a long standing bug in the MC146818 library code which can
cause reading garbage during the RTC internal update.
* changes related to the NTP/RTC consolidation work"
* tag 'timers-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
ntp: Fix prototype in the !CONFIG_GENERIC_CMOS_UPDATE case
tick/sched: Make jiffies update quick check more robust
ntp: Consolidate the RTC update implementation
ntp: Make the RTC sync offset less obscure
ntp, rtc: Move rtc_set_ntp_time() to ntp code
ntp: Make the RTC synchronization more reliable
rtc: core: Make the sync offset default more realistic
rtc: cmos: Make rtc_cmos sync offset correct
rtc: mc146818: Reduce spinlock section in mc146818_set_time()
rtc: mc146818: Prevent reading garbage
clocksource/drivers/sh_cmt: Fix potential deadlock when calling runtime PM
clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
clocksource/drivers/arm_arch_timer: Use stable count reader in erratum sne
clocksource/drivers/dw_apb_timer_of: Add error handling if no clock available
clocksource/drivers/riscv: Make RISCV_TIMER depends on RISCV_SBI
clocksource/drivers/ingenic: Fix section mismatch
clocksource/drivers/cadence_ttc: Fix memory leak in ttc_setup_clockevent()
dt-bindings: timer: renesas: tmu: Convert to json-schema
dt-bindings: timer: renesas: tmu: Document r8a774e1 bindings
clocksource/drivers/orion: Add missing clk_disable_unprepare() on error path
...
The hrtimer_get_remaining() markup is documenting, instead,
__hrtimer_get_remaining(), as it is placed at the C file.
In order to properly document it, a kernel-doc markup is needed together
with the function prototype. So, add a new one, while preserving the
existing one, just fixing the function name.
The hrtimer_is_queued prototype has a typo: it is using
'=' instead of '-' to split: identifier - description
as required by kernel-doc markup.
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/9dc87808c2fd07b7e050bafcd033c5ef05808fea.1605521731.git.mchehab+huawei@kernel.org