commit 4971c268b85e1c7a734a61622fc0813c86e2362e upstream.
Commit 98de59bfe4 ("take calculation of final prot in
security_mmap_file() into a helper") moved the code to update prot, to be
the actual protections applied to the kernel, to a new helper called
mmap_prot().
However, while without the helper ima_file_mmap() was getting the updated
prot, with the helper ima_file_mmap() gets the original prot, which
contains the protections requested by the application.
A possible consequence of this change is that, if an application calls
mmap() with only PROT_READ, and the kernel applies PROT_EXEC in addition,
that application would have access to executable memory without having this
event recorded in the IMA measurement list. This situation would occur for
example if the application, before mmap(), calls the personality() system
call with READ_IMPLIES_EXEC as the first argument.
Align ima_file_mmap() parameters with those of the mmap_file LSM hook, so
that IMA can receive both the requested prot and the final prot. Since the
requested protections are stored in a new variable, and the final
protections are stored in the existing variable, this effectively restores
the original behavior of the MMAP_CHECK hook.
Cc: stable@vger.kernel.org
Fixes: 98de59bfe4 ("take calculation of final prot in security_mmap_file() into a helper")
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On kexec file load, the Integrity Measurement Architecture (IMA)
subsystem may verify the IMA signature of the kernel and initramfs, and
measure it. The command line parameters passed to the kernel in the
kexec call may also be measured by IMA.
A remote attestation service can verify a TPM quote based on the TPM
event log, the IMA measurement list and the TPM PCR data. This can
be achieved only if the IMA measurement log is carried over from the
current kernel to the next kernel across the kexec call.
PowerPC and ARM64 both achieve this using device tree with a
"linux,ima-kexec-buffer" node. x86 platforms generally don't make use of
device tree, so use the setup_data mechanism to pass the IMA buffer to
the new kernel.
Signed-off-by: Jonathan McDowell <noodles@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> # IMA function definitions
Link: https://lore.kernel.org/r/YmKyvlF3my1yWTvK@noodles-fedora-PC23Y6EG
Currently arch_ima_get_secureboot() and arch_get_ima_policy() are
defined only when CONFIG_IMA is set, and this makes any code calling
those functions without CONFIG_IMA fail.
Move the declaration and the dummy definition of those functions
outside ifdef-CONFIG_IMA block for fixing the undefined symbols.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
[zohar@linux.ibm.com: removed in-tree/out-of-tree comment in patch description]
Reviewed-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
This patch performs the final modification necessary to pass the buffer
measurement to callers, so that they provide a functionality similar to
ima_file_hash(). It adds the 'digest' and 'digest_len' parameters to
ima_measure_critical_data() and process_buffer_measurement().
These functions calculate the digest even if there is no suitable rule in
the IMA policy and, in this case, they simply return 1 before generating a
new measurement entry.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
ima_measure_critical_data() and process_buffer_measurement() currently
don't return a result as, unlike appraisal-related functions, the result is
not used by callers to deny an operation. Measurement-related functions
instead rely on the audit subsystem to notify the system administrator when
an error occurs.
However, ima_measure_critical_data() and process_buffer_measurement() are a
special case, as these are the only functions that can return a buffer
measurement (for files, there is ima_file_hash()). In a subsequent patch,
they will be modified to return the calculated digest.
In preparation to return the result of the digest calculation, this patch
modifies the return type from void to int, and returns 0 if the buffer has
been successfully measured, a negative value otherwise.
Given that the result of the measurement is still not necessary, this patch
does not modify the behavior of existing callers by processing the returned
value. For those, the return value is ignored.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Acked-by: Paul Moore <paul@paul-moore.com> (for the SELinux bits)
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Buffer measurements, unlike file measurements, are not accessible after the
measurement is done, as buffers are not suitable for use with the
integrity_iint_cache structure (there is no index, for files it is the
inode number). In the subsequent patches, the measurement (digest) will be
returned directly by the functions that perform the buffer measurement,
ima_measure_critical_data() and process_buffer_measurement().
A caller of those functions also needs to know the algorithm used to
calculate the digest. Instead of adding the algorithm as a new parameter to
the functions, this patch provides it separately with the new function
ima_get_current_hash_algo().
Since the hash algorithm does not change after the IMA setup phase, there
is no risk of races (obtaining a digest calculated with a different
algorithm than the one returned).
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
[zohar@linux.ibm.com: annotate ima_hash_algo as __ro_after_init]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
IMA does sometimes access the inode's i_uid and compares it against the
rules' fowner. Enable IMA to handle idmapped mounts by passing down the
mount's user namespace. We simply make use of the helpers we introduced
before. If the initial user namespace is passed nothing changes so
non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-27-christian.brauner@ubuntu.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The IMA hook ima_measure_critical_data() does not support a way to
specify the source of the critical data provider. Thus, the data
measurement cannot be constrained based on the data source label
in the IMA policy.
Extend the IMA hook ima_measure_critical_data() to support passing
the data source label as an input parameter, so that the policy rule can
be used to limit the measurements based on the label.
Signed-off-by: Tushar Sugandhi <tusharsu@linux.microsoft.com>
Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
IMA provides capabilities to measure file and buffer data. However,
various data structures, policies, and states stored in kernel memory
also impact the integrity of the system. Several kernel subsystems
contain such integrity critical data. These kernel subsystems help
protect the integrity of the system. Currently, IMA does not provide a
generic function for measuring kernel integrity critical data.
Define ima_measure_critical_data, a new IMA hook, to measure kernel
integrity critical data.
Signed-off-by: Tushar Sugandhi <tusharsu@linux.microsoft.com>
Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Pull integrity subsystem updates from Mimi Zohar:
"Just three patches here. Other integrity changes are being upstreamed
via EFI (defines a common EFI secure and trusted boot IMA policy) and
BPF LSM (exporting the IMA file cache hash info based on inode).
The three patches included here:
- bug fix: fail calculating the file hash, when a file not opened for
read and the attempt to re-open it for read fails.
- defer processing the "ima_appraise" boot command line option to
avoid enabling different modes (e.g. fix, log) to when the secure
boot flag is available on arm.
- defines "ima-buf" as the default IMA buffer measurement template in
preparation for the builtin integrity "critical data" policy"
* tag 'integrity-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
ima: Don't modify file descriptor mode on the fly
ima: select ima-buf template for buffer measurement
ima: defer arch_ima_get_secureboot() call to IMA init time
This is in preparation to add a helper for BPF LSM programs to use
IMA hashes when attached to LSM hooks. There are LSM hooks like
inode_unlink which do not have a struct file * argument and cannot
use the existing ima_file_hash API.
An inode based API is, therefore, useful in LSM based detections like an
executable trying to delete itself which rely on the inode_unlink LSM
hook.
Moreover, the ima_file_hash function does nothing with the struct file
pointer apart from calling file_inode on it and converting it to an
inode.
Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Link: https://lore.kernel.org/bpf/20201124151210.1081188-2-kpsingh@chromium.org
Chester reports that it is necessary to introduce a new way to pass
the EFI secure boot status between the EFI stub and the core kernel
on ARM systems. The usual way of obtaining this information is by
checking the SecureBoot and SetupMode EFI variables, but this can
only be done after the EFI variable workqueue is created, which
occurs in a subsys_initcall(), whereas arch_ima_get_secureboot()
is called much earlier by the IMA framework.
However, the IMA framework itself is started as a late_initcall,
and the only reason the call to arch_ima_get_secureboot() occurs
so early is because it happens in the context of a __setup()
callback that parses the ima_appraise= command line parameter.
So let's refactor this code a little bit, by using a core_param()
callback to capture the command line argument, and deferring any
reasoning based on its contents to the IMA init routine.
Cc: Chester Lin <clin@suse.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Link: https://lore.kernel.org/linux-arm-kernel/20200904072905.25332-2-clin@suse.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reported-by: kernel test robot <lkp@intel.com> [missing core_param()]
[zohar@linux.ibm.com: included linux/module.h]
Tested-by: Chester Lin <clin@suse.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
As with the kernel_load_data LSM hook, add a "contents" flag to the
kernel_read_file LSM hook that indicates whether the LSM can expect
a matching call to the kernel_post_read_file LSM hook with the full
contents of the file. With the coming addition of partial file read
support for kernel_read_file*() API, the LSM will no longer be able
to always see the entire contents of a file during the read calls.
For cases where the LSM must read examine the complete file contents,
it will need to do so on its own every time the kernel_read_file
hook is called with contents=false (or reject such cases). Adjust all
existing LSMs to retain existing behavior.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Link: https://lore.kernel.org/r/20201002173828.2099543-12-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are a few places in the kernel where LSMs would like to have
visibility into the contents of a kernel buffer that has been loaded or
read. While security_kernel_post_read_file() (which includes the
buffer) exists as a pairing for security_kernel_read_file(), no such
hook exists to pair with security_kernel_load_data().
Earlier proposals for just using security_kernel_post_read_file() with a
NULL file argument were rejected (i.e. "file" should always be valid for
the security_..._file hooks, but it appears at least one case was
left in the kernel during earlier refactoring. (This will be fixed in
a subsequent patch.)
Since not all cases of security_kernel_load_data() can have a single
contiguous buffer made available to the LSM hook (e.g. kexec image
segments are separately loaded), there needs to be a way for the LSM to
reason about its expectations of the hook coverage. In order to handle
this, add a "contents" argument to the "kernel_load_data" hook that
indicates if the newly added "kernel_post_load_data" hook will be called
with the full contents once loaded. That way, LSMs requiring full contents
can choose to unilaterally reject "kernel_load_data" with contents=false
(which is effectively the existing hook coverage), but when contents=true
they can allow it and later evaluate the "kernel_post_load_data" hook
once the buffer is loaded.
With this change, LSMs can gain coverage over non-file-backed data loads
(e.g. init_module(2) and firmware userspace helper), which will happen
in subsequent patches.
Additionally prepare IMA to start processing these cases.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/r/20201002173828.2099543-9-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Take the properties of the kexec kernel's inode and the current task
ownership into consideration when matching a KEXEC_CMDLINE operation to
the rules in the IMA policy. This allows for some uniformity when
writing IMA policy rules for KEXEC_KERNEL_CHECK, KEXEC_INITRAMFS_CHECK,
and KEXEC_CMDLINE operations.
Prior to this patch, it was not possible to write a set of rules like
this:
dont_measure func=KEXEC_KERNEL_CHECK obj_type=foo_t
dont_measure func=KEXEC_INITRAMFS_CHECK obj_type=foo_t
dont_measure func=KEXEC_CMDLINE obj_type=foo_t
measure func=KEXEC_KERNEL_CHECK
measure func=KEXEC_INITRAMFS_CHECK
measure func=KEXEC_CMDLINE
The inode information associated with the kernel being loaded by a
kexec_kernel_load(2) syscall can now be included in the decision to
measure or not
Additonally, the uid, euid, and subj_* conditionals can also now be
used in KEXEC_CMDLINE rules. There was no technical reason as to why
those conditionals weren't being considered previously other than
ima_match_rules() didn't have a valid inode to use so it immediately
bailed out for KEXEC_CMDLINE operations rather than going through the
full list of conditional comparisons.
Signed-off-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Files can be mmap'ed read/write and later changed to execute to circumvent
IMA's mmap appraise policy rules. Due to locking issues (mmap semaphore
would be taken prior to i_mutex), files can not be measured or appraised at
this point. Eliminate this integrity gap, by denying the mprotect
PROT_EXECUTE change, if an mmap appraise policy rule exists.
On mprotect change success, return 0. On failure, return -EACESS.
Reviewed-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Every time a new architecture defines the IMA architecture specific
functions - arch_ima_get_secureboot() and arch_ima_get_policy(), the IMA
include file needs to be updated. To avoid this "noise", this patch
defines a new IMA Kconfig IMA_SECURE_AND_OR_TRUSTED_BOOT option, allowing
the different architectures to select it.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Philipp Rudo <prudo@linux.ibm.com> (s390)
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
This allows other parts of the kernel (perhaps a stacked LSM allowing
system monitoring, eg. the proposed KRSI LSM [1]) to retrieve the hash
of a given file from IMA if it's present in the iint cache.
It's true that the existence of the hash means that it's also in the
audit logs or in /sys/kernel/security/ima/ascii_runtime_measurements,
but it can be difficult to pull that information out for every
subsequent exec. This is especially true if a given host has been up
for a long time and the file was first measured a long time ago.
It should be kept in mind that this function gives access to cached
entries which can be removed, for instance on security_inode_free().
This is based on Peter Moody's patch:
https://sourceforge.net/p/linux-ima/mailman/message/33036180/
[1] https://lkml.org/lkml/2019/9/10/393
Signed-off-by: Florent Revest <revest@google.com>
Reviewed-by: KP Singh <kpsingh@chromium.org>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
As a result of the asymmetric public keys subtype Kconfig option being
defined as tristate, with the existing IMA Makefile, ima_asymmetric_keys.c
could be built as a kernel module. To prevent this from happening, this
patch defines and uses an intermediate Kconfig boolean option named
IMA_MEASURE_ASYMMETRIC_KEYS.
Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Suggested-by: James.Bottomley <James.Bottomley@HansenPartnership.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Reported-by: kbuild test robot <lkp@intel.com> # ima_asymmetric_keys.c
is built as a kernel module.
Fixes: 88e70da170 ("IMA: Define an IMA hook to measure keys")
Fixes: cb1aa3823c ("KEYS: Call the IMA hook to measure keys")
[zohar@linux.ibm.com: updated patch description]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Call the IMA hook from key_create_or_update() function to measure
the payload when a new key is created or an existing key is updated.
This patch adds the call to the IMA hook from key_create_or_update()
function to measure the key on key create or update.
Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
PowerNV systems use a Linux-based bootloader, which rely on the IMA
subsystem to enforce different secure boot modes. Since the
verification policy may differ based on the secure boot mode of the
system, the policies must be defined at runtime.
This patch implements arch-specific support to define IMA policy rules
based on the runtime secure boot mode of the system.
This patch provides arch-specific IMA policies if PPC_SECURE_BOOT
config is enabled.
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1572492694-6520-3-git-send-email-zohar@linux.ibm.com
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
Systems in lockdown mode should block the kexec of untrusted kernels.
For x86 and ARM we can ensure that a kernel is trustworthy by validating
a PE signature, but this isn't possible on other architectures. On those
platforms we can use IMA digital signatures instead. Add a function to
determine whether IMA has or will verify signatures for a given event type,
and if so permit kexec_file() even if the kernel is otherwise locked down.
This is restricted to cases where CONFIG_INTEGRITY_TRUSTED_KEYRING is set
in order to prevent an attacker from loading additional keys at runtime.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: linux-integrity@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>