Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Provide a NEON accelerated implementation of the recovery algorithm,
which supersedes the default byte-by-byte one.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The raid6_gfexp table represents {2}^n values for 0 <= n < 256. The
Linux async_tx framework pass values from raid6_gfexp as coefficients
for each source to prep_dma_pq() callback of DMA channel with PQ
capability. This creates problem for RAID6 offload engines (such as
Broadcom SBA) which take disk position (i.e. log of {2}) instead of
multiplicative cofficients from raid6_gfexp table.
This patch adds raid6_gflog table having log-of-2 value for any given
x such that 0 <= x < 256. For any given disk coefficient x, the
corresponding disk position is given by raid6_gflog[x]. The RAID6
offload engine driver can use this newly added raid6_gflog table to
get disk position from multiplicative coefficient.
Signed-off-by: Anup Patel <anup.patel@broadcom.com>
Reviewed-by: Scott Branden <scott.branden@broadcom.com>
Reviewed-by: Ray Jui <ray.jui@broadcom.com>
Acked-by: Shaohua Li <shli@fb.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Pull MD updates from Shaohua Li:
"This update includes:
- new AVX512 instruction based raid6 gen/recovery algorithm
- a couple of md-cluster related bug fixes
- fix a potential deadlock
- set nonrotational bit for raid array with SSD
- set correct max_hw_sectors for raid5/6, which hopefuly can improve
performance a little bit
- other minor fixes"
* tag 'md/4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md:
md: set rotational bit
raid6/test/test.c: bug fix: Specify aligned(alignment) attributes to the char arrays
raid5: handle register_shrinker failure
raid5: fix to detect failure of register_shrinker
md: fix a potential deadlock
md/bitmap: fix wrong cleanup
raid5: allow arbitrary max_hw_sectors
lib/raid6: Add AVX512 optimized xor_syndrome functions
lib/raid6/test/Makefile: Add avx512 gen_syndrome and recovery functions
lib/raid6: Add AVX512 optimized recovery functions
lib/raid6: Add AVX512 optimized gen_syndrome functions
md-cluster: make resync lock also could be interruptted
md-cluster: introduce dlm_lock_sync_interruptible to fix tasks hang
md-cluster: convert the completion to wait queue
md-cluster: protect md_find_rdev_nr_rcu with rcu lock
md-cluster: clean related infos of cluster
md: changes for MD_STILL_CLOSED flag
md-cluster: remove some unnecessary dlm_unlock_sync
md-cluster: use FORCEUNLOCK in lockres_free
md-cluster: call md_kick_rdev_from_array once ack failed
Optimize RAID6 recovery functions to take advantage of
the 512-bit ZMM integer instructions introduced in AVX512.
AVX512 optimized recovery functions, which is simply based
on recov_avx2.c written by Jim Kukunas
This patch was tested and benchmarked before submission on
a hardware that has AVX512 flags to support such instructions
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Optimize RAID6 gen_syndrom functions to take advantage of
the 512-bit ZMM integer instructions introduced in AVX512.
AVX512 optimized gen_syndrom functions, which is simply based
on avx2.c written by Yuanhan Liu and sse2.c written by hpa.
The patch was tested and benchmarked before submission on
a hardware that has AVX512 flags to support such instructions
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
The XC instruction can be used to improve the speed of the raid6
recovery. The loops now operate on blocks of 256 bytes.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Adding these pr_info and pr_err definitions so as to allow code to be
compiled successfully for testing in userspace, since the printk has
been replaced by pr_info and pr_err in algos.c
Absence of these definitions result in the compilation errors
such as ' undefined reference to `pr_info' ' ' undefined reference to
`pr_err' '
Cc: NeilBrown <neilb@suse.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
v3: s-o-b comment, explanation of performance and descision for
the start/stop implementation
Implementing rmw functionality for RAID6 requires optimized syndrome
calculation. Up to now we can only generate a complete syndrome. The
target P/Q pages are always overwritten. With this patch we provide
a framework for inplace P/Q modification. In the first place simply
fill those functions with NULL values.
xor_syndrome() has two additional parameters: start & stop. These
will indicate the first and last page that are changing during a
rmw run. That makes it possible to avoid several unneccessary loops
and speed up calculation. The caller needs to implement the following
logic to make the functions work.
1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source
blocks inside P/Q between (and including) start and end.
2) modify any block with start <= block <= stop
3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of
source blocks into P/Q between (and including) start and end.
Pages between start and stop that won't be changed should be filled
with a pointer to the kernel zero page. The reasons for not taking NULL
pages are:
1) Algorithms cross the whole source data line by line. Thus avoid
additional branches.
2) Having a NULL page avoids calculating the XOR P parity but still
need calulation steps for the Q parity. Depending on the algorithm
unrolling that might be only a difference of 2 instructions per loop.
The benchmark numbers of the gen_syndrome() functions are displayed in
the kernel log. Do the same for the xor_syndrome() functions. This
will help to analyze performance problems and give an rough estimate
how well the algorithm works. The choice of the fastest algorithm will
still depend on the gen_syndrome() performance.
With the start/stop page implementation the speed can vary a lot in real
life. E.g. a change of page 0 & page 15 on a stripe will be harder to
compute than the case where page 0 & page 1 are XOR candidates. To be not
to enthusiatic about the expected speeds we will run a worse case test
that simulates a change on the upper half of the stripe. So we do:
1) calculation of P/Q for the upper pages
2) continuation of Q for the lower (empty) pages
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
Pull md update from Neil Brown:
"Headline item is multithreading for RAID5 so that more IO/sec can be
supported on fast (SSD) devices. Also TILE-Gx SIMD suppor for RAID6
calculations and an assortment of bug fixes"
* tag 'md/3.12' of git://neil.brown.name/md:
raid5: only wakeup necessary threads
md/raid5: flush out all pending requests before proceeding with reshape.
md/raid5: use seqcount to protect access to shape in make_request.
raid5: sysfs entry to control worker thread number
raid5: offload stripe handle to workqueue
raid5: fix stripe release order
raid5: make release_stripe lockless
md: avoid deadlock when dirty buffers during md_stop.
md: Don't test all of mddev->flags at once.
md: Fix apparent cut-and-paste error in super_90_validate
raid6/test: replace echo -e with printf
RAID: add tilegx SIMD implementation of raid6
md: fix safe_mode buglet.
md: don't call md_allow_write in get_bitmap_file.
This change adds TILE-Gx SIMD instructions to the software raid
(md), modeling the Altivec implementation. This is only for Syndrome
generation; there is more that could be done to improve recovery,
as in the recent Intel SSE3 recovery implementation.
The code unrolls 8 times; this turns out to be the best on tilegx
hardware among the set 1, 2, 4, 8 or 16. The code reads one
cache-line of data from each disk, stores P and Q then goes to the
next cache-line.
The test code in sys/linux/lib/raid6/test reports 2008 MB/s data
read rate for syndrome generation using 18 disks (16 data and 2
parity). It was 1512 MB/s before this SIMD optimizations. This is
running on 1 core with all the data in cache.
This is based on the paper The Mathematics of RAID-6.
(http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf).
Signed-off-by: Ken Steele <ken@tilera.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Rebased/reworked a patch contributed by Rob Herring that uses
NEON intrinsics to perform the RAID-6 syndrome calculations.
It uses the existing unroll.awk code to generate several
unrolled versions of which the best performing one is selected
at boot time.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: hpa@linux.intel.com
Empty files can get deleted by the patch program, so remove empty Kbuild
files and their links from the parent Kbuilds.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Optimize RAID6 recovery functions to take advantage of
the 256-bit YMM integer instructions introduced in AVX2.
The patch was tested and benchmarked before submission.
However hardware is not yet released so benchmark numbers
cannot be reported.
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Add SSSE3 optimized recovery functions, as well as a system
for selecting the most appropriate recovery functions to use.
Originally-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
When reshaping we can avoid costly intermediate backup by
changing the 'start' address of the array on the device
(if there is enough room).
So as a first step, allow such a change to be requested
through sysfs, and recorded in v1.x metadata.
(As we didn't previous check that all 'pad' fields were zero,
we need a new FEATURE flag for this.
A (belatedly) check that all remaining 'pad' fields are
zero to avoid a repeat of this)
The new data offset must be requested separately for each device.
This allows each to have a different change in the data offset.
This is not likely to be used often but as data_offset can be
set per-device, new_data_offset should be too.
This patch also removes the 'acknowledged' arg to rdev_set_badblocks as
it is never used and never will be. At the same time we add a new
arg ('in_new') which is currently always zero but will be used more
soon.
When a reshape finishes we will need to update the data_offset
and rdev->sectors. So provide an exported function to do that.
Signed-off-by: NeilBrown <neilb@suse.de>
Currently a reshape operation always progresses from the start
of the array to the end unless the number of devices is being
reduced, in which case it progressed in the opposite direction.
To reverse a partial reshape which changes the number of devices
you can stop the array and re-assemble with the raid-disks numbers
reversed and it will undo.
However for a reshape that does not change the number of devices
it is not possible to reverse the reshape in the middle - you have to
wait until it completes.
So add a 'reshape_direction' attribute with is either 'forwards' or
'backwards' and can be explicitly set when delta_disks is zero.
This will become more important when we allow the data_offset to
change in a reshape. Then the explicit statement of what direction is
being used will be more useful.
This can be enabled in raid5 trivially as it already supports
reverse reshape and just needs to use a different trigger to request it.
Signed-off-by: NeilBrown <neilb@suse.de>
hot-replace is a feature being added to md which will allow a
device to be replaced without removing it from the array first.
With hot-replace a spare can be activated and recovery can start while
the original device is still in place, thus allowing a transition from
an unreliable device to a reliable device without leaving the array
degraded during the transition. It can also be use when the original
device is still reliable but it not wanted for some reason.
This will eventually be supported in RAID4/5/6 and RAID10.
This patch adds a super-block flag to distinguish the replacement
device. If an old kernel sees this flag it will reject the device.
It also adds two per-device flags which are viewable and settable via
sysfs.
"want_replacement" can be set to request that a device be replaced.
"replacement" is set to show that this device is replacing another
device.
The "rd%d" links in /sys/block/mdXx/md only apply to the original
device, not the replacement. We currently don't make links for the
replacement - there doesn't seem to be a need.
Signed-off-by: NeilBrown <neilb@suse.de>
While using etags to find free_pages(), I stumbled across this debug
definition of free_pages() that is to be used while debugging some raid
code in userspace. The __get_free_pages() allocates the correct size,
but the free_pages() does not match. free_pages(), like
__get_free_pages(), takes an order and not a size.
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: NeilBrown <neilb@suse.de>
Space must have been allocated when array was created.
A feature flag is set when the badblock list is non-empty, to
ensure old kernels don't load and trust the whole device.
We only update the on-disk badblocklist when it has changed.
If the badblocklist (or other metadata) is stored on a bad block, we
don't cope very well.
If metadata has no room for bad block, flag bad-blocks as disabled,
and do the same for 0.90 metadata.
Signed-off-by: NeilBrown <neilb@suse.de>