If an SRCU reader blocks while a synchronize_srcu_expedited() waits for
that same reader, then that grace period will spawn an endless series of
workqueue handlers, consuming a full CPU. This quickly gets pointless
because consuming more CPU isn't going to make that reader get done
faster, especially if it is blocked waiting for an external event.
This commit therefore spawns at most one pair of back-to-back workqueue
handlers per expedited grace period phase, instead inserting increasing
delays as that grace period phase grows older, but capped at 10 jiffies.
In any case, if there have been at least 100 back-to-back workqueue
handlers within a single jiffy, regardless of grace period or grace-period
phase, then a one-jiffy delay is inserted.
[ paulmck: Apply feedback from kernel test robot. ]
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reported-by: Song Liu <song@kernel.org>
Tested-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit instruments the acquisitions of the srcu_struct structure's
->lock, enabling the initiation of a transition from SRCU_SIZE_SMALL
to SRCU_SIZE_BIG when sufficient contention is experienced. The
instrumentation counts the number of trylock failures within the confines
of a single jiffy. If that number exceeds the value specified by the
srcutree.small_contention_lim kernel boot parameter (which defaults to
100), and if the value specified by the srcutree.convert_to_big kernel
boot parameter has the 0x10 bit set (defaults to 0), then a transition
will be automatically initiated.
By default, there will never be any transitions, so that none of the
srcu_struct structures ever gains an srcu_node array.
The useful values for srcutree.convert_to_big are:
0x00: Never convert.
0x01: Always convert at init_srcu_struct() time.
0x02: Convert when rcutorture prints its first round of statistics.
0x03: Decide conversion approach at boot given system size.
0x10: Convert if contention is encountered.
0x12: Convert if contention is encountered or when rcutorture prints
its first round of statistics, whichever comes first.
The value 0x11 acts the same as 0x01 because the conversion happens
before there is any chance of contention.
[ paulmck: Apply "static" feedback from kernel test robot. ]
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When an srcu_struct structure is created (but not in a kernel module)
by DEFINE_SRCU() and friends, the per-CPU srcu_data structure is
statically allocated. In all other cases, that structure is obtained
from alloc_percpu(), in which case cleanup_srcu_struct() must invoke
free_percpu() on the resulting ->sda pointer in the srcu_struct pointer.
Which it does.
Except that it also invokes free_percpu() on the ->sda pointer
referencing the statically allocated per-CPU srcu_data structures.
Which free_percpu() is surprisingly OK with.
This commit nevertheless stops cleanup_srcu_struct() from freeing
statically allocated per-CPU srcu_data structures.
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If an srcu_struct structure defined by tree SRCU's DEFINE_STATIC_SRCU()
is used by a module, sparse will give the following diagnostic:
sparse: symbol '__srcu_struct_nodes_srcu' was not declared. Should it be static?
The problem is that a within-module DEFINE_STATIC_SRCU() must define
a non-static srcu_struct because it is exported by referencing it in a
special '__section("___srcu_struct_ptrs")'. This reference is needed
so that module load and unloading can invoke init_srcu_struct() and
cleanup_srcu_struct(), respectively. Unfortunately, sparse is unaware of
'__section("___srcu_struct_ptrs")', resulting in the above false-positive
diagnostic. To avoid this false positive, this commit therefore creates
a prototype of the srcu_struct with an "extern" keyword.
Signed-off-by: Alexander Aring <aahringo@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit shrinks the srcu_struct structure by converting its ->node
field from a fixed-size compile-time array to a pointer to a dynamically
allocated array. In kernels built with large values of NR_CPUS that boot
on systems with smaller numbers of CPUs, this can save significant memory.
[ paulmck: Apply kernel test robot feedback. ]
Reported-by: A cast of thousands
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit makes Tree SRCU able to operate without an snp_node
array, that is, when the srcu_data structures' ->mynode pointers
are NULL. This can result in high contention on the srcu_struct
structure's ->lock, but only when there are lots of call_srcu(),
synchronize_srcu(), and synchronize_srcu_expedited() calls.
Note that when there is no snp_node array, all SRCU callbacks use
CPU 0's callback queue. This is optimal in the common case of low
update-side load because it removes the need to search each CPU
for the single callback that made the grace period happen.
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit fixed a typo in the srcu_node structure's ->srcu_have_cbs
comment. While in the area, redo a couple of comments to take advantage
of 100-character line lengths.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since commit title ("srcu: Allocate per-CPU data for DEFINE_SRCU() in
modules"), modules that call DEFINE_{STATIC,}SRCU will have a new array
of srcu_struct pointers, which is used by srcu code to initialize and
clean up these structures and save valuable per-cpu reserved space.
There is no reason for this array of pointers to be writable, and can
cause security or other hidden bugs. Mark these are read-only after the
module init has completed.
Tested with the following diff to ensure array not writable:
(diff is a bit reduced to avoid patch command getting confused)
a/kernel/module.c
b/kernel/module.c
-3506,6 +3506,14 static noinline int do_init_module [snip]
rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
#endif
module_enable_ro(mod, true);
+
+ if (mod->srcu_struct_ptrs) {
+ // Check if srcu_struct_ptrs access is possible
+ char x = *(char *)mod->srcu_struct_ptrs;
+ *(char *)mod->srcu_struct_ptrs = 0;
+ *(char *)mod->srcu_struct_ptrs = x;
+ }
+
mod_tree_remove_init(mod);
disable_ro_nx(&mod->init_layout);
module_arch_freeing_init(mod);
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: paulmck@linux.vnet.ibm.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: rcu@vger.kernel.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Adding DEFINE_SRCU() or DEFINE_STATIC_SRCU() to a loadable module requires
that the size of the reserved region be increased, which is not something
we want to be doing all that often. One approach would be to require
that loadable modules define an srcu_struct and invoke init_srcu_struct()
from their module_init function and cleanup_srcu_struct() from their
module_exit function. However, this is more than a bit user unfriendly.
This commit therefore creates an ___srcu_struct_ptrs linker section,
and pointers to srcu_struct structures created by DEFINE_SRCU() and
DEFINE_STATIC_SRCU() within a module are placed into that module's
___srcu_struct_ptrs section. The required init_srcu_struct() and
cleanup_srcu_struct() functions are then automatically invoked as needed
when that module is loaded and unloaded, thus allowing modules to continue
to use DEFINE_SRCU() and DEFINE_STATIC_SRCU() while avoiding the need
to increase the size of the reserved region.
Many of the algorithms and some of the code was cheerfully cherry-picked
from other code making use of linker sections, perhaps most notably from
tracepoints. All bugs are nevertheless the sole property of the author.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
[ paulmck: Use __section() and use "default" in srcu_module_notify()'s
"switch" statement as suggested by Joel Fernandes. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Replace the license boiler plate with a SPDX license identifier.
While in the area, update an email address.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Update ,h SPDX format per Joe Perches. ]
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
srcu_queue_delayed_work_on() disables preemption (and therefore CPU
hotplug in RCU's case) and then checks based on its own accounting if a
CPU is online. If the CPU is online it uses queue_delayed_work_on()
otherwise it fallbacks to queue_delayed_work().
The problem here is that queue_work() on -RT does not work with disabled
preemption.
queue_work_on() works also on an offlined CPU. queue_delayed_work_on()
has the problem that it is possible to program a timer on an offlined
CPU. This timer will fire once the CPU is online again. But until then,
the timer remains programmed and nothing will happen.
Add a local timer which will fire (as requested per delay) on the local
CPU and then enqueue the work on the specific CPU.
RCUtorture testing with SRCU-P for 24h showed no problems.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
In RCU, the distinction between "rsp", "rnp", and "rdp" has served well
for a great many years, but in SRCU, "sp" vs. "sdp" has proven confusing.
This commit therefore renames SRCU's "sp" pointers to "ssp", so that there
is "ssp" for srcu_struct pointer, "snp" for srcu_node pointer, and "sdp"
for srcu_data pointer.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Allocating a list_head structure that is almost never used, and, when
used, is used only during early boot (rcu_init() and earlier), is a bit
wasteful. This commit therefore eliminates that list_head in favor of
the one in the work_struct structure. This is safe because the work_struct
structure cannot be used until after rcu_init() returns.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Event tracing is moving to SRCU in order to take advantage of the fact
that SRCU may be safely used from idle and even offline CPUs. However,
event tracing can invoke call_srcu() very early in the boot process,
even before workqueue_init_early() is invoked (let alone rcu_init()).
Therefore, call_srcu()'s attempts to queue work fail miserably.
This commit therefore detects this situation, and refrains from attempting
to queue work before rcu_init() time, but does everything else that it
would have done, and in addition, adds the srcu_struct to a global list.
The rcu_init() function now invokes a new srcu_init() function, which
is empty if CONFIG_SRCU=n. Otherwise, srcu_init() queues work for
each srcu_struct on the list. This all happens early enough in boot
that there is but a single CPU with interrupts disabled, which allows
synchronization to be dispensed with.
Of course, the queued work won't actually be invoked until after
workqueue_init() is invoked, which happens shortly after the scheduler
is up and running. This means that although call_srcu() may be invoked
any time after per-CPU variables have been set up, there is still a very
narrow window when synchronize_srcu() won't work, and this window
extends from the time that the scheduler starts until the time that
workqueue_init() returns. This can be fixed in a manner similar to
the fix for synchronize_rcu_expedited() and friends, but until someone
actually needs to use synchronize_srcu() during this window, this fix
is added churn for no benefit.
Finally, note that Tree SRCU's new srcu_init() function invokes
queue_work() rather than the queue_delayed_work() function that is
invoked post-boot. The reason is that queue_delayed_work() will (as you
would expect) post a timer, and timers have not yet been initialized.
So use of queue_work() avoids the complaints about use of uninitialized
spinlocks that would otherwise result. Besides, some delay is already
provide by the aforementioned fact that the queued work won't actually
be invoked until after the scheduler is up and running.
Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
There are macros for static initializer for the three out of four
possible notifier types, that are:
ATOMIC_NOTIFIER_HEAD()
BLOCKING_NOTIFIER_HEAD()
RAW_NOTIFIER_HEAD()
This patch provides a static initilizer for the forth type to make it
complete.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Invoking queue_delayed_work() while holding a raw spinlock is forbidden
in -rt kernels, which is exactly what __call_srcu() does, indirectly via
srcu_funnel_gp_start(). This commit therefore downgrades Tree SRCU's
locking from raw to non-raw spinlocks, which works because call_srcu()
is not ever called while holding a raw spinlock.
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit gets rid of some ugly #ifdefs in rcutorture.c by moving
the SRCU status printing to the SRCU implementations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The function process_srcu() is not invoked outside of srcutree.c, so
this commit makes it static and drops the EXPORT_SYMBOL_GPL().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit uses TREE RCU's rnp->lock wrappers to replace a few explicit
memory barriers. This change also has the advantage of making SRCU's
memory-ordering properties be implemented in roughly the same way as they
are in Tree RCU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The call_srcu() docbook entry is currently in include/linux/srcu.h,
which causes needless processing for each include point. This commit
therefore moves this entry to kernel/rcu/srcutree.c, which the compiler
reads only once. In addition, the srcu_batches_completed() function is
used only within RCU and its torture-test suites. This commit therefore
also moves this function's declaration from include/linux/srcutiny.h,
include/linux/srcutree.h, and include/linux/srcuclassic.h to
kernel/rcu/rcu.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The include/linux/rcupdate.h file contains a number of definitions that
are used only to communicate between rcutorture, rcuperf, and the RCU code
itself. There is no point in having these definitions exposed globally
throughout the kernel, so this commit moves them to kernel/rcu/rcu.h.
This change has the added benefit of shrinking rcupdate.h.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
On small systems, in the absence of readers, expedited SRCU grace
periods can complete in less than a microsecond. This means that an
eight-CPU system can have all CPUs doing synchronize_srcu() in a tight
loop and almost always expedite. This might actually be desirable in
some situations, but in general it is a good way to needlessly burn
CPU cycles. And in those situations where it is desirable, your friend
is the function synchronize_srcu_expedited().
For other situations, this commit adds a kernel parameter that specifies
a holdoff between completing the last SRCU grace period and auto-expediting
the next. If the next grace period starts before the holdoff expires,
auto-expediting is disabled. The holdoff is 50 microseconds by default,
and can be tuned to the desired number of nanoseconds. A value of zero
disables auto-expediting.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <efault@gmx.de>