commit 691ee97e1a9de0cdb3efb893c1f180e3f4a35e32 upstream.
Patch series "Fix lazy mmu mode", v2.
I'm planning to implement lazy mmu mode for arm64 to optimize vmalloc. As
part of that, I will extend lazy mmu mode to cover kernel mappings in
vmalloc table walkers. While lazy mmu mode is already used for kernel
mappings in a few places, this will extend it's use significantly.
Having reviewed the existing lazy mmu implementations in powerpc, sparc
and x86, it looks like there are a bunch of bugs, some of which may be
more likely to trigger once I extend the use of lazy mmu. So this series
attempts to clarify the requirements and fix all the bugs in advance of
that series. See patch #1 commit log for all the details.
This patch (of 5):
The docs, implementations and use of arch_[enter|leave]_lazy_mmu_mode() is
a bit of a mess (to put it politely). There are a number of issues
related to nesting of lazy mmu regions and confusion over whether the
task, when in a lazy mmu region, is preemptible or not. Fix all the
issues relating to the core-mm. Follow up commits will fix the
arch-specific implementations. 3 arches implement lazy mmu; powerpc,
sparc and x86.
When arch_[enter|leave]_lazy_mmu_mode() was first introduced by commit
6606c3e0da ("[PATCH] paravirt: lazy mmu mode hooks.patch"), it was
expected that lazy mmu regions would never nest and that the appropriate
page table lock(s) would be held while in the region, thus ensuring the
region is non-preemptible. Additionally lazy mmu regions were only used
during manipulation of user mappings.
Commit 38e0edb15b ("mm/apply_to_range: call pte function with lazy
updates") started invoking the lazy mmu mode in apply_to_pte_range(),
which is used for both user and kernel mappings. For kernel mappings the
region is no longer protected by any lock so there is no longer any
guarantee about non-preemptibility. Additionally, for RT configs, the
holding the PTL only implies no CPU migration, it doesn't prevent
preemption.
Commit bcc6cc8325 ("mm: add default definition of set_ptes()") added
arch_[enter|leave]_lazy_mmu_mode() to the default implementation of
set_ptes(), used by x86. So after this commit, lazy mmu regions can be
nested. Additionally commit 1a10a44dfc ("sparc64: implement the new
page table range API") and commit 9fee28baa6 ("powerpc: implement the
new page table range API") did the same for the sparc and powerpc
set_ptes() overrides.
powerpc couldn't deal with preemption so avoids it in commit b9ef323ea1
("powerpc/64s: Disable preemption in hash lazy mmu mode"), which
explicitly disables preemption for the whole region in its implementation.
x86 can support preemption (or at least it could until it tried to add
support nesting; more on this below). Sparc looks to be totally broken in
the face of preemption, as far as I can tell.
powerpc can't deal with nesting, so avoids it in commit 47b8def935
("powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes"),
which removes the lazy mmu calls from its implementation of set_ptes().
x86 attempted to support nesting in commit 49147beb0c ("x86/xen: allow
nesting of same lazy mode") but as far as I can tell, this breaks its
support for preemption.
In short, it's all a mess; the semantics for
arch_[enter|leave]_lazy_mmu_mode() are not clearly defined and as a result
the implementations all have different expectations, sticking plasters and
bugs.
arm64 is aiming to start using these hooks, so let's clean everything up
before adding an arm64 implementation. Update the documentation to state
that lazy mmu regions can never be nested, must not be called in interrupt
context and preemption may or may not be enabled for the duration of the
region. And fix the generic implementation of set_ptes() to avoid
nesting.
arch-specific fixes to conform to the new spec will proceed this one.
These issues were spotted by code review and I have no evidence of issues
being reported in the wild.
Link: https://lkml.kernel.org/r/20250303141542.3371656-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20250303141542.3371656-2-ryan.roberts@arm.com
Fixes: bcc6cc8325 ("mm: add default definition of set_ptes()")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juegren Gross <jgross@suse.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dc84bc2aba85a1508f04a936f9f9a15f64ebfb31 ]
If track_pfn_copy() fails, we already added the dst VMA to the maple
tree. As fork() fails, we'll cleanup the maple tree, and stumble over
the dst VMA for which we neither performed any reservation nor copied
any page tables.
Consequently untrack_pfn() will see VM_PAT and try obtaining the
PAT information from the page table -- which fails because the page
table was not copied.
The easiest fix would be to simply clear the VM_PAT flag of the dst VMA
if track_pfn_copy() fails. However, the whole thing is about "simply"
clearing the VM_PAT flag is shaky as well: if we passed track_pfn_copy()
and performed a reservation, but copying the page tables fails, we'll
simply clear the VM_PAT flag, not properly undoing the reservation ...
which is also wrong.
So let's fix it properly: set the VM_PAT flag only if the reservation
succeeded (leaving it clear initially), and undo the reservation if
anything goes wrong while copying the page tables: clearing the VM_PAT
flag after undoing the reservation.
Note that any copied page table entries will get zapped when the VMA will
get removed later, after copy_page_range() succeeded; as VM_PAT is not set
then, we won't try cleaning VM_PAT up once more and untrack_pfn() will be
happy. Note that leaving these page tables in place without a reservation
is not a problem, as we are aborting fork(); this process will never run.
A reproducer can trigger this usually at the first try:
https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/reproducers/pat_fork.c
WARNING: CPU: 26 PID: 11650 at arch/x86/mm/pat/memtype.c:983 get_pat_info+0xf6/0x110
Modules linked in: ...
CPU: 26 UID: 0 PID: 11650 Comm: repro3 Not tainted 6.12.0-rc5+ #92
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:get_pat_info+0xf6/0x110
...
Call Trace:
<TASK>
...
untrack_pfn+0x52/0x110
unmap_single_vma+0xa6/0xe0
unmap_vmas+0x105/0x1f0
exit_mmap+0xf6/0x460
__mmput+0x4b/0x120
copy_process+0x1bf6/0x2aa0
kernel_clone+0xab/0x440
__do_sys_clone+0x66/0x90
do_syscall_64+0x95/0x180
Likely this case was missed in:
d155df53f3 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
... and instead of undoing the reservation we simply cleared the VM_PAT flag.
Keep the documentation of these functions in include/linux/pgtable.h,
one place is more than sufficient -- we should clean that up for the other
functions like track_pfn_remap/untrack_pfn separately.
Fixes: d155df53f3 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
Fixes: 2ab640379a ("x86: PAT: hooks in generic vm code to help archs to track pfnmap regions - v3")
Reported-by: xingwei lee <xrivendell7@gmail.com>
Reported-by: yuxin wang <wang1315768607@163.com>
Reported-by: Marius Fleischer <fleischermarius@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Link: https://lore.kernel.org/r/20250321112323.153741-1-david@redhat.com
Closes: https://lore.kernel.org/lkml/CABOYnLx_dnqzpCW99G81DmOr+2UzdmZMk=T3uxwNxwz+R1RAwg@mail.gmail.com/
Closes: https://lore.kernel.org/lkml/CAJg=8jwijTP5fre8woS4JVJQ8iUA6v+iNcsOgtj9Zfpc3obDOQ@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit eba2591d99d1f14a04c8a8a845ab0795b93f5646 upstream.
Instead of directly dereferencing page tables entries, which can cause
issues (see commit 20a004e7b0 ("arm64: mm: Use READ_ONCE/WRITE_ONCE when
accessing page tables"), let's introduce new functions to get the
pud/p4d/pgd entries (the pte and pmd versions already exist).
Note that arm pgd_t is actually an array so pgdp_get() is defined as a
macro to avoid a build error.
Those new functions will be used in subsequent commits by the riscv
architecture.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231213203001.179237-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: WangYuli <wangyuli@uniontech.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
Patch series "Change calling convention for ->huge_fault", v2.
There are two unrelated changes to the calling convention for
->huge_fault. I've bundled them together to help people notice the
change. The first is to improve scalability of DAX page faults by
allowing them to be handled under the VMA lock. The second is to remove
enum page_entry_size since it's really unnecessary. The changelogs and
documentation updates hopefully work to that end.
This patch (of 3):
Allow this to be used in generic code. Also add PUD_ORDER.
Link: https://lkml.kernel.org/r/20230818202335.2739663-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230818202335.2739663-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Add support for DAX vmemmap optimization for ppc64", v6.
This patch series implements changes required to support DAX vmemmap
optimization for ppc64. The vmemmap optimization is only enabled with
radix MMU translation and 1GB PUD mapping with 64K page size.
The patch series also splits the hugetlb vmemmap optimization as a
separate Kconfig variable so that architectures can enable DAX vmemmap
optimization without enabling hugetlb vmemmap optimization. This should
enable architectures like arm64 to enable DAX vmemmap optimization while
they can't enable hugetlb vmemmap optimization. More details of the same
are in patch "mm/vmemmap optimization: Split hugetlb and devdax vmemmap
optimization".
With 64K page size for 16384 pages added (1G) we save 14 pages
With 4K page size for 262144 pages added (1G) we save 4094 pages
With 4K page size for 512 pages added (2M) we save 6 pages
This patch (of 13):
Architectures like powerpc would like to enable transparent huge page pud
support only with radix translation. To support that add
has_transparent_pud_hugepage() helper that architectures can override.
[aneesh.kumar@linux.ibm.com: use the new has_transparent_pud_hugepage()]
Link: https://lkml.kernel.org/r/87tttrvtaj.fsf@linux.ibm.com
Link: https://lkml.kernel.org/r/20230724190759.483013-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20230724190759.483013-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The x86 Control-flow Enforcement Technology (CET) feature includes a new
type of memory called shadow stack. This shadow stack memory has some
unusual properties, which requires some core mm changes to function
properly.
One sharp edge is that PTEs that are both Write=0 and Dirty=1 are
treated as shadow by the CPU, but this combination used to be created by
the kernel on x86. Previous patches have changed the kernel to now avoid
creating these PTEs unless they are for shadow stack memory. In case any
missed corners of the kernel are still creating PTEs like this for
non-shadow stack memory, and to catch any re-introductions of the logic,
warn if any shadow stack PTEs (Write=0, Dirty=1) are found in non-shadow
stack VMAs when they are being zapped. This won't catch transient cases
but should have decent coverage.
In order to check if a PTE is shadow stack in core mm code, add two arch
breakouts arch_check_zapped_pte/pmd(). This will allow shadow stack
specific code to be kept in arch/x86.
Only do the check if shadow stack is supported by the CPU and configured
because in rare cases older CPUs may write Dirty=1 to a Write=0 CPU on
older CPUs. This check is handled in pte_shstk()/pmd_shstk().
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-18-rick.p.edgecombe%40intel.com
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.
One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). Future patches will make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.
But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.
So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.
Previous work pte_mkwrite() renamed pte_mkwrite_novma() and converted
callers that don't have a VMA were to use pte_mkwrite_novma(). So now
change pte_mkwrite() to take a VMA and change the remaining callers to
pass a VMA. Apply the same changes for pmd_mkwrite().
No functional change.
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/all/20230613001108.3040476-4-rick.p.edgecombe%40intel.com
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.
One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). The goal is to make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.
But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.
So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.
Start the process by renaming pte_mkwrite() to pte_mkwrite_novma() and
adding the pte_mkwrite() wrapper in linux/pgtable.h. Apply the same
pattern for pmd_mkwrite(). Since not all archs have a pmd_mkwrite_novma(),
create a new arch config HAS_HUGE_PAGE that can be used to tell if
pmd_mkwrite() should be defined. Otherwise in the !HAS_HUGE_PAGE cases the
compiler would not be able to find pmd_mkwrite_novma().
No functional change.
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/lkml/CAHk-=wiZjSu7c9sFYZb3q04108stgHff2wfbokGCCgW7riz+8Q@mail.gmail.com/
Link: https://lore.kernel.org/all/20230613001108.3040476-2-rick.p.edgecombe%40intel.com