mirror of
https://github.com/armbian/linux-cix.git
synced 2026-01-06 12:30:45 -08:00
defec178df76e0caadd4e8ef68f3d655a2088198
149 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
395f6081ba |
drivers/base/memory: determine and store zone for single-zone memory blocks
test_pages_in_a_zone() is just another nasty PFN walker that can easily stumble over ZONE_DEVICE memory ranges falling into the same memory block as ordinary system RAM: the memmap of parts of these ranges might possibly be uninitialized. In fact, we observed (on an older kernel) with UBSAN: UBSAN: Undefined behaviour in ./include/linux/mm.h:1133:50 index 7 is out of range for type 'zone [5]' CPU: 121 PID: 35603 Comm: read_all Kdump: loaded Tainted: [...] Hardware name: Dell Inc. PowerEdge R7425/08V001, BIOS 1.12.2 11/15/2019 Call Trace: dump_stack+0x9a/0xf0 ubsan_epilogue+0x9/0x7a __ubsan_handle_out_of_bounds+0x13a/0x181 test_pages_in_a_zone+0x3c4/0x500 show_valid_zones+0x1fa/0x380 dev_attr_show+0x43/0xb0 sysfs_kf_seq_show+0x1c5/0x440 seq_read+0x49d/0x1190 vfs_read+0xff/0x300 ksys_read+0xb8/0x170 do_syscall_64+0xa5/0x4b0 entry_SYSCALL_64_after_hwframe+0x6a/0xdf RIP: 0033:0x7f01f4439b52 We seem to stumble over a memmap that contains a garbage zone id. While we could try inserting pfn_to_online_page() calls, it will just make memory offlining slower, because we use test_pages_in_a_zone() to make sure we're offlining pages that all belong to the same zone. Let's just get rid of this PFN walker and determine the single zone of a memory block -- if any -- for early memory blocks during boot. For memory onlining, we know the single zone already. Let's avoid any additional memmap scanning and just rely on the zone information available during boot. For memory hot(un)plug, we only really care about memory blocks that: * span a single zone (and, thereby, a single node) * are completely System RAM (IOW, no holes, no ZONE_DEVICE) If one of these conditions is not met, we reject memory offlining. Hotplugged memory blocks (starting out offline), always meet both conditions. There are three scenarios to handle: (1) Memory hot(un)plug A memory block with zone == NULL cannot be offlined, corresponding to our previous test_pages_in_a_zone() check. After successful memory onlining/offlining, we simply set the zone accordingly. * Memory onlining: set the zone we just used for onlining * Memory offlining: set zone = NULL So a hotplugged memory block starts with zone = NULL. Once memory onlining is done, we set the proper zone. (2) Boot memory with !CONFIG_NUMA We know that there is just a single pgdat, so we simply scan all zones of that pgdat for an intersection with our memory block PFN range when adding the memory block. If more than one zone intersects (e.g., DMA and DMA32 on x86 for the first memory block) we set zone = NULL and consequently mimic what test_pages_in_a_zone() used to do. (3) Boot memory with CONFIG_NUMA At the point in time we create the memory block devices during boot, we don't know yet which nodes *actually* span a memory block. While we could scan all zones of all nodes for intersections, overlapping nodes complicate the situation and scanning all nodes is possibly expensive. But that problem has already been solved by the code that sets the node of a memory block and creates the link in the sysfs -- do_register_memory_block_under_node(). So, we hook into the code that sets the node id for a memory block. If we already have a different node id set for the memory block, we know that multiple nodes *actually* have PFNs falling into our memory block: we set zone = NULL and consequently mimic what test_pages_in_a_zone() used to do. If there is no node id set, we do the same as (2) for the given node. Note that the call order in driver_init() is: -> memory_dev_init(): create memory block devices -> node_dev_init(): link memory block devices to the node and set the node id So in summary, we detect if there is a single zone responsible for this memory block and we consequently store the zone in that case in the memory block, updating it during memory onlining/offlining. Link: https://lkml.kernel.org/r/20220210184359.235565-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reported-by: Rafael Parra <rparrazo@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rafael Parra <rparrazo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
70b5b46a75 |
mm, memory_hotplug: reorganize new pgdat initialization
When a !node_online node is brought up it needs a hotplug specific initialization because the node could be either uninitialized yet or it could have been recycled after previous hotremove. hotadd_init_pgdat is responsible for that. Internal pgdat state is initialized at two places currently - hotadd_init_pgdat - free_area_init_core_hotplug There is no real clear cut what should go where but this patch's chosen to move the whole internal state initialization into free_area_init_core_hotplug. hotadd_init_pgdat is still responsible to pull all the parts together - most notably to initialize zonelists because those depend on the overall topology. This patch doesn't introduce any functional change. Link: https://lkml.kernel.org/r/20220127085305.20890-5-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Rafael Aquini <raquini@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexey Makhalov <amakhalov@vmware.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nico Pache <npache@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
390511e147 |
mm, memory_hotplug: drop arch_free_nodedata
Prior to "mm: handle uninitialized numa nodes gracefully" memory hotplug used to allocate pgdat when memory has been added to a node (hotadd_init_pgdat) arch_free_nodedata has been only used in the failure path because once the pgdat is exported (to be visible by NODA_DATA(nid)) it cannot really be freed because there is no synchronization available for that. pgdat is allocated for each possible nodes now so the memory hotplug doesn't need to do the ever use arch_free_nodedata so drop it. This patch doesn't introduce any functional change. Link: https://lkml.kernel.org/r/20220127085305.20890-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Rafael Aquini <raquini@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexey Makhalov <amakhalov@vmware.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Nico Pache <npache@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
09f49dca57 |
mm: handle uninitialized numa nodes gracefully
We have had several reports [1][2][3] that page allocator blows up when an allocation from a possible node is requested. The underlying reason is that NODE_DATA for the specific node is not allocated. NUMA specific initialization is arch specific and it can vary a lot. E.g. x86 tries to initialize all nodes that have some cpu affinity (see init_cpu_to_node) but this can be insufficient because the node might be cpuless for example. One way to address this problem would be to check for !node_online nodes when trying to get a zonelist and silently fall back to another node. That is unfortunately adding a branch into allocator hot path and it doesn't handle any other potential NODE_DATA users. This patch takes a different approach (following a lead of [3]) and it pre allocates pgdat for all possible nodes in an arch indipendent code - free_area_init. All uninitialized nodes are treated as memoryless nodes. node_state of the node is not changed because that would lead to other side effects - e.g. sysfs representation of such a node and from past discussions [4] it is known that some tools might have problems digesting that. Newly allocated pgdat only gets a minimal initialization and the rest of the work is expected to be done by the memory hotplug - hotadd_new_pgdat (renamed to hotadd_init_pgdat). generic_alloc_nodedata is changed to use the memblock allocator because neither page nor slab allocators are available at the stage when all pgdats are allocated. Hotplug doesn't allocate pgdat anymore so we can use the early boot allocator. The only arch specific implementation is ia64 and that is changed to use the early allocator as well. [1] http://lkml.kernel.org/r/20211101201312.11589-1-amakhalov@vmware.com [2] http://lkml.kernel.org/r/20211207224013.880775-1-npache@redhat.com [3] http://lkml.kernel.org/r/20190114082416.30939-1-mhocko@kernel.org [4] http://lkml.kernel.org/r/20200428093836.27190-1-srikar@linux.vnet.ibm.com [akpm@linux-foundation.org: replace comment, per Mike] Link: https://lkml.kernel.org/r/Yfe7RBeLCijnWBON@dhcp22.suse.cz Reported-by: Alexey Makhalov <amakhalov@vmware.com> Tested-by: Alexey Makhalov <amakhalov@vmware.com> Reported-by: Nico Pache <npache@redhat.com> Acked-by: Rafael Aquini <raquini@redhat.com> Tested-by: Rafael Aquini <raquini@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
e930d99971 |
mm, memory_hotplug: make arch_alloc_nodedata independent on CONFIG_MEMORY_HOTPLUG
Patch series "mm, memory_hotplug: handle unitialized numa node gracefully". The core of the fix is patch 2 which also links existing bug reports. The high level goal is to have all possible numa nodes have their pgdat allocated and initialized so for_each_possible_node(nid) NODE_DATA(nid) will never return garbage. This has proven to be problem in several places when an offline numa node is used for an allocation just to realize that node_data and therefore allocation fallback zonelists are not initialized and such an allocation request blows up. There were attempts to address that by checking node_online in several places including the page allocator. This patchset approaches the problem from a different perspective and instead of special casing, which just adds a runtime overhead, it allocates pglist_data for each possible node. This can add some memory overhead for platforms with high number of possible nodes if they do not contain any memory. This should be a rather rare configuration though. How to test this? David has provided and excellent howto: http://lkml.kernel.org/r/6e5ebc19-890c-b6dd-1924-9f25c441010d@redhat.com Patches 1 and 3-6 are mostly cleanups. The patchset has been reviewed by Rafael (thanks!) and the core fix tested by Rafael and Alexey (thanks to both). David has tested as per instructions above and hasn't found any fallouts in the memory hotplug scenarios. This patch (of 6): This is a preparatory patch and it doesn't introduce any functional change. It merely pulls out arch_alloc_nodedata (and co) outside of CONFIG_MEMORY_HOTPLUG because the following patch will need to call this from the generic MM code. Link: https://lkml.kernel.org/r/20220127085305.20890-1-mhocko@kernel.org Link: https://lkml.kernel.org/r/20220127085305.20890-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Rafael Aquini <raquini@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Wei Yang <richard.weiyang@gmail.com> Cc: Alexey Makhalov <amakhalov@vmware.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Nico Pache <npache@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
43e3aa2a32 |
mm/memory_hotplug: remove stale function declarations
These functions no longer exist. Link: https://lkml.kernel.org/r/20210929143600.49379-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alex Shi <alexs@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
445fcf7c72 |
mm/memory_hotplug: memory group aware "auto-movable" online policy
Use memory groups to improve our "auto-movable" onlining policy: 1. For static memory groups (e.g., a DIMM), online a memory block MOVABLE only if all other memory blocks in the group are either MOVABLE or could be onlined MOVABLE. A DIMM will either be MOVABLE or not, not a mixture. 2. For dynamic memory groups (e.g., a virtio-mem device), online a memory block MOVABLE only if all other memory blocks inside the current unit are either MOVABLE or could be onlined MOVABLE. For a virtio-mem device with a device block size with 512 MiB, all 128 MiB memory blocks wihin a 512 MiB unit will either be MOVABLE or not, not a mixture. We have to pass the memory group to zone_for_pfn_range() to take the memory group into account. Note: for now, there seems to be no compelling reason to make this behavior configurable. Link: https://lkml.kernel.org/r/20210806124715.17090-9-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hui Zhu <teawater@gmail.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Marek Kedzierski <mkedzier@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
836809ec75 |
mm/memory_hotplug: track present pages in memory groups
Let's track all present pages in each memory group. Especially, track memory present in ZONE_MOVABLE and memory present in one of the kernel zones (which really only is ZONE_NORMAL right now as memory groups only apply to hotplugged memory) separately within a memory group, to prepare for making smart auto-online decision for individual memory blocks within a memory group based on group statistics. Link: https://lkml.kernel.org/r/20210806124715.17090-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hui Zhu <teawater@gmail.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Marek Kedzierski <mkedzier@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
028fc57a1c |
drivers/base/memory: introduce "memory groups" to logically group memory blocks
In our "auto-movable" memory onlining policy, we want to make decisions across memory blocks of a single memory device. Examples of memory devices include ACPI memory devices (in the simplest case a single DIMM) and virtio-mem. For now, we don't have a connection between a single memory block device and the real memory device. Each memory device consists of 1..X memory block devices. Let's logically group memory blocks belonging to the same memory device in "memory groups". Memory groups can span multiple physical ranges and a memory group itself does not contain any information regarding physical ranges, only properties (e.g., "max_pages") necessary for improved memory onlining. Introduce two memory group types: 1) Static memory group: E.g., a single ACPI memory device, consisting of 1..X memory resources. A memory group consists of 1..Y memory blocks. The whole group is added/removed in one go. If any part cannot get offlined, the whole group cannot be removed. 2) Dynamic memory group: E.g., a single virtio-mem device. Memory is dynamically added/removed in a fixed granularity, called a "unit", consisting of 1..X memory blocks. A unit is added/removed in one go. If any part of a unit cannot get offlined, the whole unit cannot be removed. In case of 1) we usually want either all memory managed by ZONE_MOVABLE or none. In case of 2) we usually want to have as many units as possible managed by ZONE_MOVABLE. We want a single unit to be of the same type. For now, memory groups are an internal concept that is not exposed to user space; we might want to change that in the future, though. add_memory() users can specify a mgid instead of a nid when passing the MHP_NID_IS_MGID flag. Link: https://lkml.kernel.org/r/20210806124715.17090-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hui Zhu <teawater@gmail.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Marek Kedzierski <mkedzier@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
4b09700244 |
mm: track present early pages per zone
Patch series "mm/memory_hotplug: "auto-movable" online policy and memory groups", v3.
I. Goal
The goal of this series is improving in-kernel auto-online support. It
tackles the fundamental problems that:
1) We can create zone imbalances when onlining all memory blindly to
ZONE_MOVABLE, in the worst case crashing the system. We have to know
upfront how much memory we are going to hotplug such that we can
safely enable auto-onlining of all hotplugged memory to ZONE_MOVABLE
via "online_movable". This is far from practical and only applicable in
limited setups -- like inside VMs under the RHV/oVirt hypervisor which
will never hotplug more than 3 times the boot memory (and the
limitation is only in place due to the Linux limitation).
2) We see more setups that implement dynamic VM resizing, hot(un)plugging
memory to resize VM memory. In these setups, we might hotplug a lot of
memory, but it might happen in various small steps in both directions
(e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...). virtio-mem is the
primary driver of this upstream right now, performing such dynamic
resizing NUMA-aware via multiple virtio-mem devices.
Onlining all hotplugged memory to ZONE_NORMAL means we basically have
no hotunplug guarantees. Onlining all to ZONE_MOVABLE means we can
easily run into zone imbalances when growing a VM. We want a mixture,
and we want as much memory as reasonable/configured in ZONE_MOVABLE.
Details regarding zone imbalances can be found at [1].
3) Memory devices consist of 1..X memory block devices, however, the
kernel doesn't really track the relationship. Consequently, also user
space has no idea. We want to make per-device decisions.
As one example, for memory hotunplug it doesn't make sense to use a
mixture of zones within a single DIMM: we want all MOVABLE if
possible, otherwise all !MOVABLE, because any !MOVABLE part will easily
block the whole DIMM from getting hotunplugged.
As another example, virtio-mem operates on individual units that span
1..X memory blocks. Similar to a DIMM, we want a unit to either be all
MOVABLE or !MOVABLE. A "unit" can be thought of like a DIMM, however,
all units of a virtio-mem device logically belong together and are
managed (added/removed) by a single driver. We want as much memory of
a virtio-mem device to be MOVABLE as possible.
4) We want memory onlining to be done right from the kernel while adding
memory, not triggered by user space via udev rules; for example, this
is reqired for fast memory hotplug for drivers that add individual
memory blocks, like virito-mem. We want a way to configure a policy in
the kernel and avoid implementing advanced policies in user space.
The auto-onlining support we have in the kernel is not sufficient. All we
have is a) online everything MOVABLE (online_movable) b) online everything
!MOVABLE (online_kernel) c) keep zones contiguous (online). This series
allows configuring c) to mean instead "online movable if possible
according to the coniguration, driven by a maximum MOVABLE:KERNEL ratio"
-- a new onlining policy.
II. Approach
This series does 3 things:
1) Introduces the "auto-movable" online policy that initially operates on
individual memory blocks only. It uses a maximum MOVABLE:KERNEL ratio
to make a decision whether a memory block will be onlined to
ZONE_MOVABLE or not. However, in the basic form, hotplugged KERNEL
memory does not allow for more MOVABLE memory (details in the
patches). CMA memory is treated like MOVABLE memory.
2) Introduces static (e.g., DIMM) and dynamic (e.g., virtio-mem) memory
groups and uses group information to make decisions in the
"auto-movable" online policy across memory blocks of a single memory
device (modeled as memory group). More details can be found in patch
#3 or in the DIMM example below.
3) Maximizes ZONE_MOVABLE memory within dynamic memory groups, by
allowing ZONE_NORMAL memory within a dynamic memory group to allow for
more ZONE_MOVABLE memory within the same memory group. The target use
case is dynamic VM resizing using virtio-mem. See the virtio-mem
example below.
I remember that the basic idea of using a ratio to implement a policy in
the kernel was once mentioned by Vitaly Kuznetsov, but I might be wrong (I
lost the pointer to that discussion).
For me, the main use case is using it along with virtio-mem (and DIMMs /
ppc64 dlpar where necessary) for dynamic resizing of VMs, increasing the
amount of memory we can hotunplug reliably again if we might eventually
hotplug a lot of memory to a VM.
III. Target Usage
The target usage will be:
1) Linux boots with "mhp_default_online_type=offline"
2) User space (e.g., systemd unit) configures memory onlining (according
to a config file and system properties), for example:
* Setting memory_hotplug.online_policy=auto-movable
* Setting memory_hotplug.auto_movable_ratio=301
* Setting memory_hotplug.auto_movable_numa_aware=true
3) User space enabled auto onlining via "echo online >
/sys/devices/system/memory/auto_online_blocks"
4) User space triggers manual onlining of all already-offline memory
blocks (go over offline memory blocks and set them to "online")
IV. Example
For DIMMs, hotplugging 4 GiB DIMMs to a 4 GiB VM with a configured ratio of
301% results in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-79: Movable (DIMM 0)
Memory block 80-111: Movable (DIMM 1)
Memory block 112-143: Movable (DIMM 2)
Memory block 144-275: Normal (DIMM 3)
Memory block 176-207: Normal (DIMM 4)
... all Normal
(-> hotplugged Normal memory does not allow for more Movable memory)
For virtio-mem, using a simple, single virtio-mem device with a 4 GiB VM
will result in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-143: Movable (virtio-mem, first 12 GiB)
Memory block 144: Normal (virtio-mem, next 128 MiB)
Memory block 145-147: Movable (virtio-mem, next 384 MiB)
Memory block 148: Normal (virtio-mem, next 128 MiB)
Memory block 149-151: Movable (virtio-mem, next 384 MiB)
... Normal/Movable mixture as above
(-> hotplugged Normal memory allows for more Movable memory within
the same device)
Which gives us maximum flexibility when dynamically growing/shrinking a
VM in smaller steps.
V. Doc Update
I'll update the memory-hotplug.rst documentation, once the overhaul [1] is
usptream. Until then, details can be found in patch #2.
VI. Future Work
1) Use memory groups for ppc64 dlpar
2) Being able to specify a portion of (early) kernel memory that will be
excluded from the ratio. Like "128 MiB globally/per node" are excluded.
This might be helpful when starting VMs with extremely small memory
footprint (e.g., 128 MiB) and hotplugging memory later -- not wanting
the first hotplugged units getting onlined to ZONE_MOVABLE. One
alternative would be a trigger to not consider ZONE_DMA memory
in the ratio. We'll have to see if this is really rrequired.
3) Indicate to user space that MOVABLE might be a bad idea -- especially
relevant when memory ballooning without support for balloon compaction
is active.
This patch (of 9):
For implementing a new memory onlining policy, which determines when to
online memory blocks to ZONE_MOVABLE semi-automatically, we need the
number of present early (boot) pages -- present pages excluding hotplugged
pages. Let's track these pages per zone.
Pass a page instead of the zone to adjust_present_page_count(), similar as
adjust_managed_page_count() and derive the zone from the page.
It's worth noting that a memory block to be offlined/onlined is either
completely "early" or "not early". add_memory() and friends can only add
complete memory blocks and we only online/offline complete (individual)
memory blocks.
Link: https://lkml.kernel.org/r/20210806124715.17090-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210806124715.17090-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
e1c158e495 |
mm/memory_hotplug: remove nid parameter from remove_memory() and friends
There is only a single user remaining. We can simply lookup the nid only used for node offlining purposes when walking our memory blocks. We don't expect to remove multi-nid ranges; and if we'd ever do, we most probably don't care about removing multi-nid ranges that actually result in empty nodes. If ever required, we can detect the "multi-nid" scenario and simply try offlining all online nodes. Link: https://lkml.kernel.org/r/20210712124052.26491-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Scott Cheloha <cheloha@linux.ibm.com> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joe Perches <joe@perches.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michel Lespinasse <michel@lespinasse.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pankaj.gupta@ionos.com> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pierre Morel <pmorel@linux.ibm.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Rich Felker <dalias@libc.org> Cc: Sergei Trofimovich <slyfox@gentoo.org> Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
65a2aa5f48 |
mm/memory_hotplug: remove nid parameter from arch_remove_memory()
The parameter is unused, let's remove it. Link: https://lkml.kernel.org/r/20210712124052.26491-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390] Reviewed-by: Pankaj Gupta <pankaj.gupta@ionos.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Baoquan He <bhe@redhat.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Sergei Trofimovich <slyfox@gentoo.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Michel Lespinasse <michel@lespinasse.org> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com> Cc: Joe Perches <joe@perches.com> Cc: Pierre Morel <pmorel@linux.ibm.com> Cc: Jia He <justin.he@arm.com> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Scott Cheloha <cheloha@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
7cf209ba8a |
mm/memory_hotplug: use "unsigned long" for PFN in zone_for_pfn_range()
Patch series "mm/memory_hotplug: preparatory patches for new online policy and memory"
These are all cleanups and one fix previously sent as part of [1]:
[PATCH v1 00/12] mm/memory_hotplug: "auto-movable" online policy and memory
groups.
These patches make sense even without the other series, therefore I pulled
them out to make the other series easier to digest.
[1] https://lkml.kernel.org/r/20210607195430.48228-1-david@redhat.com
This patch (of 4):
Checkpatch complained on a follow-up patch that we are using "unsigned"
here, which defaults to "unsigned int" and checkpatch is correct.
As we will search for a fitting zone using the wrong pfn, we might end
up onlining memory to one of the special kernel zones, such as ZONE_DMA,
which can end badly as the onlined memory does not satisfy properties of
these zones.
Use "unsigned long" instead, just as we do in other places when handling
PFNs. This can bite us once we have physical addresses in the range of
multiple TB.
Link: https://lkml.kernel.org/r/20210712124052.26491-2-david@redhat.com
Fixes:
|
||
|
|
426e5c429d |
mm: memory_hotplug: factor out bootmem core functions to bootmem_info.c
Patch series "Free some vmemmap pages of HugeTLB page", v23.
This patch series will free some vmemmap pages(struct page structures)
associated with each HugeTLB page when preallocated to save memory.
In order to reduce the difficulty of the first version of code review. In
this version, we disable PMD/huge page mapping of vmemmap if this feature
was enabled. This acutely eliminates a bunch of the complex code doing
page table manipulation. When this patch series is solid, we cam add the
code of vmemmap page table manipulation in the future.
The struct page structures (page structs) are used to describe a physical
page frame. By default, there is an one-to-one mapping from a page frame
to it's corresponding page struct.
The HugeTLB pages consist of multiple base page size pages and is
supported by many architectures. See hugetlbpage.rst in the Documentation
directory for more details. On the x86 architecture, HugeTLB pages of
size 2MB and 1GB are currently supported. Since the base page size on x86
is 4KB, a 2MB HugeTLB page consists of 512 base pages and a 1GB HugeTLB
page consists of 4096 base pages. For each base page, there is a
corresponding page struct.
Within the HugeTLB subsystem, only the first 4 page structs are used to
contain unique information about a HugeTLB page. HUGETLB_CGROUP_MIN_ORDER
provides this upper limit. The only 'useful' information in the remaining
page structs is the compound_head field, and this field is the same for
all tail pages.
By removing redundant page structs for HugeTLB pages, memory can returned
to the buddy allocator for other uses.
When the system boot up, every 2M HugeTLB has 512 struct page structs which
size is 8 pages(sizeof(struct page) * 512 / PAGE_SIZE).
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | -------------> | 2 |
| | +-----------+ +-----------+
| | | 3 | -------------> | 3 |
| | +-----------+ +-----------+
| | | 4 | -------------> | 4 |
| 2MB | +-----------+ +-----------+
| | | 5 | -------------> | 5 |
| | +-----------+ +-----------+
| | | 6 | -------------> | 6 |
| | +-----------+ +-----------+
| | | 7 | -------------> | 7 |
| | +-----------+ +-----------+
| |
| |
| |
+-----------+
The value of page->compound_head is the same for all tail pages. The
first page of page structs (page 0) associated with the HugeTLB page
contains the 4 page structs necessary to describe the HugeTLB. The only
use of the remaining pages of page structs (page 1 to page 7) is to point
to page->compound_head. Therefore, we can remap pages 2 to 7 to page 1.
Only 2 pages of page structs will be used for each HugeTLB page. This
will allow us to free the remaining 6 pages to the buddy allocator.
Here is how things look after remapping.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
When a HugeTLB is freed to the buddy system, we should allocate 6 pages
for vmemmap pages and restore the previous mapping relationship.
Apart from 2MB HugeTLB page, we also have 1GB HugeTLB page. It is similar
to the 2MB HugeTLB page. We also can use this approach to free the
vmemmap pages.
In this case, for the 1GB HugeTLB page, we can save 4094 pages. This is a
very substantial gain. On our server, run some SPDK/QEMU applications
which will use 1024GB HugeTLB page. With this feature enabled, we can
save ~16GB (1G hugepage)/~12GB (2MB hugepage) memory.
Because there are vmemmap page tables reconstruction on the
freeing/allocating path, it increases some overhead. Here are some
overhead analysis.
1) Allocating 10240 2MB HugeTLB pages.
a) With this patch series applied:
# time echo 10240 > /proc/sys/vm/nr_hugepages
real 0m0.166s
user 0m0.000s
sys 0m0.166s
# bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[8K, 16K) 5476 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[16K, 32K) 4760 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32K, 64K) 4 | |
b) Without this patch series:
# time echo 10240 > /proc/sys/vm/nr_hugepages
real 0m0.067s
user 0m0.000s
sys 0m0.067s
# bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[4K, 8K) 10147 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 93 | |
Summarize: this feature is about ~2x slower than before.
2) Freeing 10240 2MB HugeTLB pages.
a) With this patch series applied:
# time echo 0 > /proc/sys/vm/nr_hugepages
real 0m0.213s
user 0m0.000s
sys 0m0.213s
# bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[8K, 16K) 6 | |
[16K, 32K) 10227 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[32K, 64K) 7 | |
b) Without this patch series:
# time echo 0 > /proc/sys/vm/nr_hugepages
real 0m0.081s
user 0m0.000s
sys 0m0.081s
# bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[4K, 8K) 6805 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 3427 |@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[16K, 32K) 8 | |
Summary: The overhead of __free_hugepage is about ~2-3x slower than before.
Although the overhead has increased, the overhead is not significant.
Like Mike said, "However, remember that the majority of use cases create
HugeTLB pages at or shortly after boot time and add them to the pool. So,
additional overhead is at pool creation time. There is no change to
'normal run time' operations of getting a page from or returning a page to
the pool (think page fault/unmap)".
Despite the overhead and in addition to the memory gains from this series.
The following data is obtained by Joao Martins. Very thanks to his
effort.
There's an additional benefit which is page (un)pinners will see an improvement
and Joao presumes because there are fewer memmap pages and thus the tail/head
pages are staying in cache more often.
Out of the box Joao saw (when comparing linux-next against linux-next +
this series) with gup_test and pinning a 16G HugeTLB file (with 1G pages):
get_user_pages(): ~32k -> ~9k
unpin_user_pages(): ~75k -> ~70k
Usually any tight loop fetching compound_head(), or reading tail pages
data (e.g. compound_head) benefit a lot. There's some unpinning
inefficiencies Joao was fixing[2], but with that in added it shows even
more:
unpin_user_pages(): ~27k -> ~3.8k
[1] https://lore.kernel.org/linux-mm/20210409205254.242291-1-mike.kravetz@oracle.com/
[2] https://lore.kernel.org/linux-mm/20210204202500.26474-1-joao.m.martins@oracle.com/
This patch (of 9):
Move bootmem info registration common API to individual bootmem_info.c.
And we will use {get,put}_page_bootmem() to initialize the page for the
vmemmap pages or free the vmemmap pages to buddy in the later patch. So
move them out of CONFIG_MEMORY_HOTPLUG_SPARSE. This is just code movement
without any functional change.
Link: https://lkml.kernel.org/r/20210510030027.56044-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210510030027.56044-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Mina Almasry <almasrymina@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
a08a2ae346 |
mm,memory_hotplug: allocate memmap from the added memory range
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section. Currently, alloc_pages_node() is used
for those allocations.
This has some disadvantages:
a) an existing memory is consumed for that purpose
(eg: ~2MB per 128MB memory section on x86_64)
This can even lead to extreme cases where system goes OOM because
the physically hotplugged memory depletes the available memory before
it is onlined.
b) if the whole node is movable then we have off-node struct pages
which has performance drawbacks.
c) It might be there are no PMD_ALIGNED chunks so memmap array gets
populated with base pages.
This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.
Vmemap page tables can map arbitrary memory. That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables. This implementation uses the beginning of the hotplugged memory
for that purpose.
There are some non-obviously things to consider though.
Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed. This means that the reserved physical range is not
online although it is used. The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns. The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined. For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g. vmemmap
page tables).
The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory). That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.
As per above, the functions that are introduced are:
- mhp_init_memmap_on_memory:
Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
fully span.
- mhp_deinit_memmap_on_memory:
Offlines as many sections as vmemmap pages fully span, removes the
range from zhe zone by remove_pfn_range_from_zone(), and calls
kasan_remove_zero_shadow() for the range.
The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages(). Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory(). Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.
On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages(). This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty. If offline_pages() fails, we account back
vmemmap pages. If it succeeds, we call mhp_deinit_memmap_on_memory().
Hot-remove:
We need to be careful when removing memory, as adding and
removing memory needs to be done with the same granularity.
To check that this assumption is not violated, we check the
memory range we want to remove and if a) any memory block has
vmemmap pages and b) the range spans more than a single memory
block, we scream out loud and refuse to proceed.
If all is good and the range was using memmap on memory (aka vmemmap pages),
we construct an altmap structure so free_hugepage_table does the right
thing and calls vmem_altmap_free instead of free_pagetable.
Link: https://lkml.kernel.org/r/20210421102701.25051-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
bca3feaa07 |
mm/memory_hotplug: prevalidate the address range being added with platform
Patch series "mm/memory_hotplug: Pre-validate the address range with platform", v5. This series adds a mechanism allowing platforms to weigh in and prevalidate incoming address range before proceeding further with the memory hotplug. This helps prevent potential platform errors for the given address range, down the hotplug call chain, which inevitably fails the hotplug itself. This mechanism was suggested by David Hildenbrand during another discussion with respect to a memory hotplug fix on arm64 platform. https://lore.kernel.org/linux-arm-kernel/1600332402-30123-1-git-send-email-anshuman.khandual@arm.com/ This mechanism focuses on the addressibility aspect and not [sub] section alignment aspect. Hence check_hotplug_memory_range() and check_pfn_span() have been left unchanged. This patch (of 4): This introduces mhp_range_allowed() which can be called in various memory hotplug paths to prevalidate the address range which is being added, with the platform. Then mhp_range_allowed() calls mhp_get_pluggable_range() which provides applicable address range depending on whether linear mapping is required or not. For ranges that require linear mapping, it calls a new arch callback arch_get_mappable_range() which the platform can override. So the new callback, in turn provides the platform an opportunity to configure acceptable memory hotplug address ranges in case there are constraints. This mechanism will help prevent platform specific errors deep down during hotplug calls. This drops now redundant check_hotplug_memory_addressable() check in __add_pages() but instead adds a VM_BUG_ON() check which would ensure that the range has been validated with mhp_range_allowed() earlier in the call chain. Besides mhp_get_pluggable_range() also can be used by potential memory hotplug callers to avail the allowed physical range which would go through on a given platform. This does not really add any new range check in generic memory hotplug but instead compensates for lost checks in arch_add_memory() where applicable and check_hotplug_memory_addressable(), with unified mhp_range_allowed(). [akpm@linux-foundation.org: make pagemap_range() return -EINVAL when mhp_range_allowed() fails] Link: https://lkml.kernel.org/r/1612149902-7867-1-git-send-email-anshuman.khandual@arm.com Link: https://lkml.kernel.org/r/1612149902-7867-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> # s390 Cc: Will Deacon <will@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: teawater <teawaterz@linux.alibaba.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
26011267e1 |
mm/memory_hotplug: MEMHP_MERGE_RESOURCE -> MHP_MERGE_RESOURCE
Let's make "MEMHP_MERGE_RESOURCE" consistent with "MHP_NONE", "mhp_t" and "mhp_flags". As discussed recently [1], "mhp" is our internal acronym for memory hotplug now. [1] https://lore.kernel.org/linux-mm/c37de2d0-28a1-4f7d-f944-cfd7d81c334d@redhat.com/ Link: https://lkml.kernel.org/r/20210126115829.10909-1-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Wei Liu <wei.liu@kernel.org> Reviewed-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
1adf8b468f |
mm/memory_hotplug: rename all existing 'memhp' into 'mhp'
This renames all 'memhp' instances to 'mhp' except for memhp_default_state for being a kernel command line option. This is just a clean up and should not cause a functional change. Let's make it consistent rater than mixing the two prefixes. In preparation for more users of the 'mhp' terminology. Link: https://lkml.kernel.org/r/1611554093-27316-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
9f605f2605 |
mm: move pfn_to_online_page() out of line
Patch series "mm: Fix pfn_to_online_page() with respect to ZONE_DEVICE", v4.
A pfn-walker that uses pfn_to_online_page() may inadvertently translate a
pfn as online and in the page allocator, when it is offline managed by a
ZONE_DEVICE mapping (details in Patch 3: ("mm: Teach pfn_to_online_page()
about ZONE_DEVICE section collisions")).
The 2 proposals under consideration are teach pfn_to_online_page() to be
precise in the presence of mixed-zone sections, or teach the memory-add
code to drop the System RAM associated with ZONE_DEVICE collisions. In
order to not regress memory capacity by a few 10s to 100s of MiB the
approach taken in this set is to add precision to pfn_to_online_page().
In the course of validating pfn_to_online_page() a couple other fixes
fell out:
1/ soft_offline_page() fails to drop the reference taken in the
madvise(..., MADV_SOFT_OFFLINE) case.
2/ memory_failure() uses get_dev_pagemap() to lookup ZONE_DEVICE pages,
however that mapping may contain data pages and metadata raw pfns.
Introduce pgmap_pfn_valid() to delineate the 2 types and fail the
handling of raw metadata pfns.
This patch (of 4);
pfn_to_online_page() is already too large to be a macro or an inline
function. In anticipation of further logic changes / growth, move it out
of line.
No functional change, just code movement.
Link: https://lkml.kernel.org/r/161058499000.1840162.702316708443239771.stgit@dwillia2-desk3.amr.corp.intel.com
Link: https://lkml.kernel.org/r/161058499608.1840162.10165648147615238793.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
8a5be36b93 |
Merge tag 'powerpc-5.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman: - Switch to the generic C VDSO, as well as some cleanups of our VDSO setup/handling code. - Support for KUAP (Kernel User Access Prevention) on systems using the hashed page table MMU, using memory protection keys. - Better handling of PowerVM SMT8 systems where all threads of a core do not share an L2, allowing the scheduler to make better scheduling decisions. - Further improvements to our machine check handling. - Show registers when unwinding interrupt frames during stack traces. - Improvements to our pseries (PowerVM) partition migration code. - Several series from Christophe refactoring and cleaning up various parts of the 32-bit code. - Other smaller features, fixes & cleanups. Thanks to: Alan Modra, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Ard Biesheuvel, Athira Rajeev, Balamuruhan S, Bill Wendling, Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Daniel Axtens, David Hildenbrand, Frederic Barrat, Ganesh Goudar, Gautham R. Shenoy, Geert Uytterhoeven, Giuseppe Sacco, Greg Kurz, Harish, Jan Kratochvil, Jordan Niethe, Kaixu Xia, Laurent Dufour, Leonardo Bras, Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu Desnoyers, Nathan Lynch, Nicholas Piggin, Oleg Nesterov, Oliver O'Halloran, Oscar Salvador, Po-Hsu Lin, Qian Cai, Qinglang Miao, Randy Dunlap, Ravi Bangoria, Sachin Sant, Sandipan Das, Sebastian Andrzej Siewior , Segher Boessenkool, Srikar Dronamraju, Tyrel Datwyler, Uwe Kleine-König, Vincent Stehlé, Youling Tang, and Zhang Xiaoxu. * tag 'powerpc-5.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (304 commits) powerpc/32s: Fix cleanup_cpu_mmu_context() compile bug powerpc: Add config fragment for disabling -Werror powerpc/configs: Add ppc64le_allnoconfig target powerpc/powernv: Rate limit opal-elog read failure message powerpc/pseries/memhotplug: Quieten some DLPAR operations powerpc/ps3: use dma_mapping_error() powerpc: force inlining of csum_partial() to avoid multiple csum_partial() with GCC10 powerpc/perf: Fix Threshold Event Counter Multiplier width for P10 powerpc/mm: Fix hugetlb_free_pmd_range() and hugetlb_free_pud_range() KVM: PPC: Book3S HV: Fix mask size for emulated msgsndp KVM: PPC: fix comparison to bool warning KVM: PPC: Book3S: Assign boolean values to a bool variable powerpc: Inline setup_kup() powerpc/64s: Mark the kuap/kuep functions non __init KVM: PPC: Book3S HV: XIVE: Add a comment regarding VP numbering powerpc/xive: Improve error reporting of OPAL calls powerpc/xive: Simplify xive_do_source_eoi() powerpc/xive: Remove P9 DD1 flag XIVE_IRQ_FLAG_EOI_FW powerpc/xive: Remove P9 DD1 flag XIVE_IRQ_FLAG_MASK_FW powerpc/xive: Remove P9 DD1 flag XIVE_IRQ_FLAG_SHIFT_BUG ... |
||
|
|
a927bd6ba9 |
mm: fix phys_to_target_node() and memory_add_physaddr_to_nid() exports
The core-mm has a default __weak implementation of phys_to_target_node()
to mirror the weak definition of memory_add_physaddr_to_nid(). That
symbol is exported for modules. However, while the export in
mm/memory_hotplug.c exported the symbol in the configuration cases of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=y
...and:
CONFIG_NUMA_KEEP_MEMINFO=n
CONFIG_MEMORY_HOTPLUG=y
...it failed to export the symbol in the case of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=n
Not only is that broken, but Christoph points out that the kernel should
not be exporting any __weak symbol, which means that
memory_add_physaddr_to_nid() example that phys_to_target_node() copied
is broken too.
Rework the definition of phys_to_target_node() and
memory_add_physaddr_to_nid() to not require weak symbols. Move to the
common arch override design-pattern of an asm header defining a symbol
to replace the default implementation.
The only common header that all memory_add_physaddr_to_nid() producing
architectures implement is asm/sparsemem.h. In fact, powerpc already
defines its memory_add_physaddr_to_nid() helper in sparsemem.h.
Double-down on that observation and define phys_to_target_node() where
necessary in asm/sparsemem.h. An alternate consideration that was
discarded was to put this override in asm/numa.h, but that entangles
with the definition of MAX_NUMNODES relative to the inclusion of
linux/nodemask.h, and requires powerpc to grow a new header.
The dependency on NUMA_KEEP_MEMINFO for DEV_DAX_HMEM_DEVICES is invalid
now that the symbol is properly exported / stubbed in all combinations
of CONFIG_NUMA_KEEP_MEMINFO and CONFIG_MEMORY_HOTPLUG.
[dan.j.williams@intel.com: v4]
Link: https://lkml.kernel.org/r/160461461867.1505359.5301571728749534585.stgit@dwillia2-desk3.amr.corp.intel.com
[dan.j.williams@intel.com: powerpc: fix create_section_mapping compile warning]
Link: https://lkml.kernel.org/r/160558386174.2948926.2740149041249041764.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes:
|
||
|
|
4abb1e5b63 |
powerpc/mm: factor out creating/removing linear mapping
We want to stop abusing memory hotplug infrastructure in memtrace code to perform allocations and remove the linear mapping. Instead we will use alloc_contig_pages() and remove the linear mapping manually. Let's factor out creating/removing the linear mapping into arch_create_linear_mapping() / arch_remove_linear_mapping() - so in the future, we might be able to have whole arch_add_memory() / arch_remove_memory() be implemented in common code. Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201111145322.15793-4-david@redhat.com |
||
|
|
9ca6551ee2 |
mm/memory_hotplug: MEMHP_MERGE_RESOURCE to specify merging of System RAM resources
Some add_memory*() users add memory in small, contiguous memory blocks. Examples include virtio-mem, hyper-v balloon, and the XEN balloon. This can quickly result in a lot of memory resources, whereby the actual resource boundaries are not of interest (e.g., it might be relevant for DIMMs, exposed via /proc/iomem to user space). We really want to merge added resources in this scenario where possible. Let's provide a flag (MEMHP_MERGE_RESOURCE) to specify that a resource either created within add_memory*() or passed via add_memory_resource() shall be marked mergeable and merged with applicable siblings. To implement that, we need a kernel/resource interface to mark selected System RAM resources mergeable (IORESOURCE_SYSRAM_MERGEABLE) and trigger merging. Note: We really want to merge after the whole operation succeeded, not directly when adding a resource to the resource tree (it would break add_memory_resource() and require splitting resources again when the operation failed - e.g., due to -ENOMEM). Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kees Cook <keescook@chromium.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Wei Liu <wei.liu@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Roger Pau Monné <roger.pau@citrix.com> Cc: Julien Grall <julien@xen.org> Cc: Baoquan He <bhe@redhat.com> Cc: Wei Yang <richardw.yang@linux.intel.com> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Leonardo Bras <leobras.c@gmail.com> Cc: Libor Pechacek <lpechacek@suse.cz> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Link: https://lkml.kernel.org/r/20200911103459.10306-6-david@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
b611719978 |
mm/memory_hotplug: prepare passing flags to add_memory() and friends
We soon want to pass flags, e.g., to mark added System RAM resources. mergeable. Prepare for that. This patch is based on a similar patch by Oscar Salvador: https://lkml.kernel.org/r/20190625075227.15193-3-osalvador@suse.de Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Juergen Gross <jgross@suse.com> # Xen related part Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Acked-by: Wei Liu <wei.liu@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Baoquan He <bhe@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Wei Liu <wei.liu@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: Libor Pechacek <lpechacek@suse.cz> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Leonardo Bras <leobras.c@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Julien Grall <julien@xen.org> Cc: Kees Cook <keescook@chromium.org> Cc: Roger Pau Monné <roger.pau@citrix.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richardw.yang@linux.intel.com> Link: https://lkml.kernel.org/r/20200911103459.10306-5-david@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
3a0aaefe41 |
mm/memory_hotplug: guard more declarations by CONFIG_MEMORY_HOTPLUG
We soon want to pass flags via a new type to add_memory() and friends. That revealed that we currently don't guard some declarations by CONFIG_MEMORY_HOTPLUG. While some definitions could be moved to different places, let's keep it minimal for now and use CONFIG_MEMORY_HOTPLUG for all functions only compiled with CONFIG_MEMORY_HOTPLUG. Wrap sparse_decode_mem_map() into CONFIG_MEMORY_HOTPLUG, it's only called from CONFIG_MEMORY_HOTPLUG code. While at it, remove allow_online_pfn_range(), which is no longer around, and mhp_notimplemented(), which is unused. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Baoquan He <bhe@redhat.com> Cc: Wei Yang <richardw.yang@linux.intel.com> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jason Wang <jasowang@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Julien Grall <julien@xen.org> Cc: Kees Cook <keescook@chromium.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Len Brown <lenb@kernel.org> Cc: Leonardo Bras <leobras.c@gmail.com> Cc: Libor Pechacek <lpechacek@suse.cz> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Roger Pau Monné <roger.pau@citrix.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Wei Liu <wei.liu@kernel.org> Link: https://lkml.kernel.org/r/20200911103459.10306-4-david@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |