This patch reverts two prior patches, e7310c9402
("security: implement sctp_assoc_established hook in selinux") and
7c2ef0240e ("security: add sctp_assoc_established hook"), which
create the security_sctp_assoc_established() LSM hook and provide a
SELinux implementation. Unfortunately these two patches were merged
without proper review (the Reviewed-by and Tested-by tags from
Richard Haines were for previous revisions of these patches that
were significantly different) and there are outstanding objections
from the SELinux maintainers regarding these patches.
Work is currently ongoing to correct the problems identified in the
reverted patches, as well as others that have come up during review,
but it is unclear at this point in time when that work will be ready
for inclusion in the mainline kernel. In the interest of not keeping
objectionable code in the kernel for multiple weeks, and potentially
a kernel release, we are reverting the two problematic patches.
Signed-off-by: Paul Moore <paul@paul-moore.com>
security_sctp_assoc_established() is added to replace
security_inet_conn_established() called in
sctp_sf_do_5_1E_ca(), so that asoc can be accessed in security
subsystem and save the peer secid to asoc->peer_secid.
v1->v2:
- fix the return value of security_sctp_assoc_established() in
security.h, found by kernel test robot and Ondrej.
Fixes: 72e89f5008 ("security: Add support for SCTP security hooks")
Reported-by: Prashanth Prahlad <pprahlad@redhat.com>
Reviewed-by: Richard Haines <richard_c_haines@btinternet.com>
Tested-by: Richard Haines <richard_c_haines@btinternet.com>
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is to move secid and peer_secid from endpoint to association,
and pass asoc to sctp_assoc_request and sctp_sk_clone instead of ep. As
ep is the local endpoint and asoc represents a connection, and in SCTP
one sk/ep could have multiple asoc/connection, saving secid/peer_secid
for new asoc will overwrite the old asoc's.
Note that since asoc can be passed as NULL, security_sctp_assoc_request()
is moved to the place right after the new_asoc is created in
sctp_sf_do_5_1B_init() and sctp_sf_do_unexpected_init().
v1->v2:
- fix the description of selinux_netlbl_skbuff_setsid(), as Jakub noticed.
- fix the annotation in selinux_sctp_assoc_request(), as Richard Noticed.
Fixes: 72e89f5008 ("security: Add support for SCTP security hooks")
Reported-by: Prashanth Prahlad <pprahlad@redhat.com>
Reviewed-by: Richard Haines <richard_c_haines@btinternet.com>
Tested-by: Richard Haines <richard_c_haines@btinternet.com>
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now security_dentry_init_security() only supports single security
label and is used by SELinux only. There are two users of this hook,
namely ceph and nfs.
NFS does not care about xattr name. Ceph hardcodes the xattr name to
security.selinux (XATTR_NAME_SELINUX).
I am making changes to fuse/virtiofs to send security label to virtiofsd
and I need to send xattr name as well. I also hardcoded the name of
xattr to security.selinux.
Stephen Smalley suggested that it probably is a good idea to modify
security_dentry_init_security() to also return name of xattr so that
we can avoid this hardcoding in the callers.
This patch adds a new parameter "const char **xattr_name" to
security_dentry_init_security() and LSM puts the name of xattr
too if caller asked for it (xattr_name != NULL).
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: James Morris <jamorris@linux.microsoft.com>
[PM: fixed typos in the commit description]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Use the 'struct cred' saved at binder_open() to lookup
the security ID via security_cred_getsecid(). This
ensures that the security context that opened binder
is the one used to generate the secctx.
Cc: stable@vger.kernel.org # 5.4+
Fixes: ec74136ded ("binder: create node flag to request sender's security context")
Signed-off-by: Todd Kjos <tkjos@google.com>
Suggested-by: Stephen Smalley <stephen.smalley.work@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Since binder was integrated with selinux, it has passed
'struct task_struct' associated with the binder_proc
to represent the source and target of transactions.
The conversion of task to SID was then done in the hook
implementations. It turns out that there are race conditions
which can result in an incorrect security context being used.
Fix by using the 'struct cred' saved during binder_open and pass
it to the selinux subsystem.
Cc: stable@vger.kernel.org # 5.14 (need backport for earlier stables)
Fixes: 79af73079d ("Add security hooks to binder and implement the hooks for SELinux.")
Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Todd Kjos <tkjos@google.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
A full expalantion of io_uring is beyond the scope of this commit
description, but in summary it is an asynchronous I/O mechanism
which allows for I/O requests and the resulting data to be queued
in memory mapped "rings" which are shared between the kernel and
userspace. Optionally, io_uring offers the ability for applications
to spawn kernel threads to dequeue I/O requests from the ring and
submit the requests in the kernel, helping to minimize the syscall
overhead. Rings are accessed in userspace by memory mapping a file
descriptor provided by the io_uring_setup(2), and can be shared
between applications as one might do with any open file descriptor.
Finally, process credentials can be registered with a given ring
and any process with access to that ring can submit I/O requests
using any of the registered credentials.
While the io_uring functionality is widely recognized as offering a
vastly improved, and high performing asynchronous I/O mechanism, its
ability to allow processes to submit I/O requests with credentials
other than its own presents a challenge to LSMs. When a process
creates a new io_uring ring the ring's credentials are inhertied
from the calling process; if this ring is shared with another
process operating with different credentials there is the potential
to bypass the LSMs security policy. Similarly, registering
credentials with a given ring allows any process with access to that
ring to submit I/O requests with those credentials.
In an effort to allow LSMs to apply security policy to io_uring I/O
operations, this patch adds two new LSM hooks. These hooks, in
conjunction with the LSM anonymous inode support previously
submitted, allow an LSM to apply access control policy to the
sharing of io_uring rings as well as any io_uring credential changes
requested by a process.
The new LSM hooks are described below:
* int security_uring_override_creds(cred)
Controls if the current task, executing an io_uring operation,
is allowed to override it's credentials with @cred. In cases
where the current task is a user application, the current
credentials will be those of the user application. In cases
where the current task is a kernel thread servicing io_uring
requests the current credentials will be those of the io_uring
ring (inherited from the process that created the ring).
* int security_uring_sqpoll(void)
Controls if the current task is allowed to create an io_uring
polling thread (IORING_SETUP_SQPOLL). Without a SQPOLL thread
in the kernel processes must submit I/O requests via
io_uring_enter(2) which allows us to compare any requested
credential changes against the application making the request.
With a SQPOLL thread, we can no longer compare requested
credential changes against the application making the request,
the comparison is made against the ring's credentials.
Signed-off-by: Paul Moore <paul@paul-moore.com>
Back then, commit 96ae522795 ("bpf: Add bpf_probe_write_user BPF helper
to be called in tracers") added the bpf_probe_write_user() helper in order
to allow to override user space memory. Its original goal was to have a
facility to "debug, divert, and manipulate execution of semi-cooperative
processes" under CAP_SYS_ADMIN. Write to kernel was explicitly disallowed
since it would otherwise tamper with its integrity.
One use case was shown in cf9b1199de ("samples/bpf: Add test/example of
using bpf_probe_write_user bpf helper") where the program DNATs traffic
at the time of connect(2) syscall, meaning, it rewrites the arguments to
a syscall while they're still in userspace, and before the syscall has a
chance to copy the argument into kernel space. These days we have better
mechanisms in BPF for achieving the same (e.g. for load-balancers), but
without having to write to userspace memory.
Of course the bpf_probe_write_user() helper can also be used to abuse
many other things for both good or bad purpose. Outside of BPF, there is
a similar mechanism for ptrace(2) such as PTRACE_PEEK{TEXT,DATA} and
PTRACE_POKE{TEXT,DATA}, but would likely require some more effort.
Commit 96ae522795 explicitly dedicated the helper for experimentation
purpose only. Thus, move the helper's availability behind a newly added
LOCKDOWN_BPF_WRITE_USER lockdown knob so that the helper is disabled under
the "integrity" mode. More fine-grained control can be implemented also
from LSM side with this change.
Fixes: 96ae522795 ("bpf: Add bpf_probe_write_user BPF helper to be called in tracers")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Rename LOCKDOWN_BPF_READ into LOCKDOWN_BPF_READ_KERNEL so we have naming
more consistent with a LOCKDOWN_BPF_WRITE_USER option that we are adding.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
seliunx_xfrm_policy_lookup() is hooks of security_xfrm_policy_lookup().
The dir argument is uselss in security_xfrm_policy_lookup(). So
remove the dir argument from selinux_xfrm_policy_lookup() and
security_xfrm_policy_lookup().
Signed-off-by: Zhongjun Tan <tanzhongjun@yulong.com>
[PM: reformat the subject line]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Pull Landlock LSM from James Morris:
"Add Landlock, a new LSM from Mickaël Salaün.
Briefly, Landlock provides for unprivileged application sandboxing.
From Mickaël's cover letter:
"The goal of Landlock is to enable to restrict ambient rights (e.g.
global filesystem access) for a set of processes. Because Landlock
is a stackable LSM [1], it makes possible to create safe security
sandboxes as new security layers in addition to the existing
system-wide access-controls. This kind of sandbox is expected to
help mitigate the security impact of bugs or unexpected/malicious
behaviors in user-space applications. Landlock empowers any
process, including unprivileged ones, to securely restrict
themselves.
Landlock is inspired by seccomp-bpf but instead of filtering
syscalls and their raw arguments, a Landlock rule can restrict the
use of kernel objects like file hierarchies, according to the
kernel semantic. Landlock also takes inspiration from other OS
sandbox mechanisms: XNU Sandbox, FreeBSD Capsicum or OpenBSD
Pledge/Unveil.
In this current form, Landlock misses some access-control features.
This enables to minimize this patch series and ease review. This
series still addresses multiple use cases, especially with the
combined use of seccomp-bpf: applications with built-in sandboxing,
init systems, security sandbox tools and security-oriented APIs [2]"
The cover letter and v34 posting is here:
https://lore.kernel.org/linux-security-module/20210422154123.13086-1-mic@digikod.net/
See also:
https://landlock.io/
This code has had extensive design discussion and review over several
years"
Link: https://lore.kernel.org/lkml/50db058a-7dde-441b-a7f9-f6837fe8b69f@schaufler-ca.com/ [1]
Link: https://lore.kernel.org/lkml/f646e1c7-33cf-333f-070c-0a40ad0468cd@digikod.net/ [2]
* tag 'landlock_v34' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
landlock: Enable user space to infer supported features
landlock: Add user and kernel documentation
samples/landlock: Add a sandbox manager example
selftests/landlock: Add user space tests
landlock: Add syscall implementations
arch: Wire up Landlock syscalls
fs,security: Add sb_delete hook
landlock: Support filesystem access-control
LSM: Infrastructure management of the superblock
landlock: Add ptrace restrictions
landlock: Set up the security framework and manage credentials
landlock: Add ruleset and domain management
landlock: Add object management
Of the three LSMs that implement the security_task_getsecid() LSM
hook, all three LSMs provide the task's objective security
credentials. This turns out to be unfortunate as most of the hook's
callers seem to expect the task's subjective credentials, although
a small handful of callers do correctly expect the objective
credentials.
This patch is the first step towards fixing the problem: it splits
the existing security_task_getsecid() hook into two variants, one
for the subjective creds, one for the objective creds.
void security_task_getsecid_subj(struct task_struct *p,
u32 *secid);
void security_task_getsecid_obj(struct task_struct *p,
u32 *secid);
While this patch does fix all of the callers to use the correct
variant, in order to keep this patch focused on the callers and to
ease review, the LSMs continue to use the same implementation for
both hooks. The net effect is that this patch should not change
the behavior of the kernel in any way, it will be up to the latter
LSM specific patches in this series to change the hook
implementations and return the correct credentials.
Acked-by: Mimi Zohar <zohar@linux.ibm.com> (IMA)
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Add a new hook that takes an existing super block and a new mount
with new options and determines if new options confict with an
existing mount or not.
A filesystem can use this new hook to determine if it can share
the an existing superblock with a new superblock for the new mount.
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Acked-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
[PM: tweak the subject line, fix tab/space problems]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
When interacting with user namespace and non-user namespace aware
filesystem capabilities the vfs will perform various security checks to
determine whether or not the filesystem capabilities can be used by the
caller, whether they need to be removed and so on. The main
infrastructure for this resides in the capability codepaths but they are
called through the LSM security infrastructure even though they are not
technically an LSM or optional. This extends the existing security hooks
security_inode_removexattr(), security_inode_killpriv(),
security_inode_getsecurity() to pass down the mount's user namespace and
makes them aware of idmapped mounts.
In order to actually get filesystem capabilities from disk the
capability infrastructure exposes the get_vfs_caps_from_disk() helper.
For user namespace aware filesystem capabilities a root uid is stored
alongside the capabilities.
In order to determine whether the caller can make use of the filesystem
capability or whether it needs to be ignored it is translated according
to the superblock's user namespace. If it can be translated to uid 0
according to that id mapping the caller can use the filesystem
capabilities stored on disk. If we are accessing the inode that holds
the filesystem capabilities through an idmapped mount we map the root
uid according to the mount's user namespace. Afterwards the checks are
identical to non-idmapped mounts: reading filesystem caps from disk
enforces that the root uid associated with the filesystem capability
must have a mapping in the superblock's user namespace and that the
caller is either in the same user namespace or is a descendant of the
superblock's user namespace. For filesystems that are mountable inside
user namespace the caller can just mount the filesystem and won't
usually need to idmap it. If they do want to idmap it they can create an
idmapped mount and mark it with a user namespace they created and which
is thus a descendant of s_user_ns. For filesystems that are not
mountable inside user namespaces the descendant rule is trivially true
because the s_user_ns will be the initial user namespace.
If the initial user namespace is passed nothing changes so non-idmapped
mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-11-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
This change adds a new LSM hook, inode_init_security_anon(), that will
be used while creating secure anonymous inodes. The hook allows/denies
its creation and assigns a security context to the inode.
The new hook accepts an optional context_inode parameter that callers
can use to provide additional contextual information to security modules
for granting/denying permission to create an anon-inode of the same type.
This context_inode's security_context can also be used to initialize the
newly created anon-inode's security_context.
Signed-off-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Pull selinux updates from Paul Moore:
"While we have a small number of SELinux patches for v5.11, there are a
few changes worth highlighting:
- Change the LSM network hooks to pass flowi_common structs instead
of the parent flowi struct as the LSMs do not currently need the
full flowi struct and they do not have enough information to use it
safely (missing information on the address family).
This patch was discussed both with Herbert Xu (representing team
netdev) and James Morris (representing team
LSMs-other-than-SELinux).
- Fix how we handle errors in inode_doinit_with_dentry() so that we
attempt to properly label the inode on following lookups instead of
continuing to treat it as unlabeled.
- Tweak the kernel logic around allowx, auditallowx, and dontauditx
SELinux policy statements such that the auditx/dontauditx are
effective even without the allowx statement.
Everything passes our test suite"
* tag 'selinux-pr-20201214' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux:
lsm,selinux: pass flowi_common instead of flowi to the LSM hooks
selinux: Fix fall-through warnings for Clang
selinux: drop super_block backpointer from superblock_security_struct
selinux: fix inode_doinit_with_dentry() LABEL_INVALID error handling
selinux: allow dontauditx and auditallowx rules to take effect without allowx
selinux: fix error initialization in inode_doinit_with_dentry()
Steffen Klassert says:
====================
pull request (net-next): ipsec-next 2020-12-12
Just one patch this time:
1) Redact the SA keys with kernel lockdown confidentiality.
If enabled, no secret keys are sent to uuserspace.
From Antony Antony.
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec-next:
xfrm: redact SA secret with lockdown confidentiality
====================
Link: https://lore.kernel.org/r/20201212085737.2101294-1-steffen.klassert@secunet.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
xdp_return_frame_bulk() needs to pass a xdp_buff
to __xdp_return().
strlcpy got converted to strscpy but here it makes no
functional difference, so just keep the right code.
Conflicts:
net/netfilter/nf_tables_api.c
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Pull namespaced fscaps fix from James Morris:
"Fix namespaced fscaps when !CONFIG_SECURITY (Serge Hallyn)"
* tag 'fixes-v5.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
[SECURITY] fix namespaced fscaps when !CONFIG_SECURITY
A followup change to tcp_request_sock_op would have to drop the 'const'
qualifier from the 'route_req' function as the
'security_inet_conn_request' call is moved there - and that function
expects a 'struct sock *'.
However, it turns out its also possible to add a const qualifier to
security_inet_conn_request instead.
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
redact XFRM SA secret in the netlink response to xfrm_get_sa()
or dumpall sa.
Enable lockdown, confidentiality mode, at boot or at run time.
e.g. when enabled:
cat /sys/kernel/security/lockdown
none integrity [confidentiality]
ip xfrm state
src 172.16.1.200 dst 172.16.1.100
proto esp spi 0x00000002 reqid 2 mode tunnel
replay-window 0
aead rfc4106(gcm(aes)) 0x0000000000000000000000000000000000000000 96
note: the aead secret is redacted.
Redacting secret is also a FIPS 140-2 requirement.
v1->v2
- add size checks before memset calls
v2->v3
- replace spaces with tabs for consistency
v3->v4
- use kernel lockdown instead of a /proc setting
v4->v5
- remove kconfig option
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Antony Antony <antony.antony@secunet.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
As pointed out by Herbert in a recent related patch, the LSM hooks do
not have the necessary address family information to use the flowi
struct safely. As none of the LSMs currently use any of the protocol
specific flowi information, replace the flowi pointers with pointers
to the address family independent flowi_common struct.
Reported-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>