Commit Graph

459 Commits

Author SHA1 Message Date
Frederic Weisbecker
e7f2be115f sched/cputime: Fix getrusage(RUSAGE_THREAD) with nohz_full
getrusage(RUSAGE_THREAD) with nohz_full may return shorter utime/stime
than the actual time.

task_cputime_adjusted() snapshots utime and stime and then adjust their
sum to match the scheduler maintained cputime.sum_exec_runtime.
Unfortunately in nohz_full, sum_exec_runtime is only updated once per
second in the worst case, causing a discrepancy against utime and stime
that can be updated anytime by the reader using vtime.

To fix this situation, perform an update of cputime.sum_exec_runtime
when the cputime snapshot reports the task as actually running while
the tick is disabled. The related overhead is then contained within the
relevant situations.

Reported-by: Hasegawa Hitomi <hasegawa-hitomi@fujitsu.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Hasegawa Hitomi <hasegawa-hitomi@fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Acked-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20211026141055.57358-3-frederic@kernel.org
2021-12-02 15:08:22 +01:00
Alexander Mikhalitsyn
85b6d24646 shm: extend forced shm destroy to support objects from several IPC nses
Currently, the exit_shm() function not designed to work properly when
task->sysvshm.shm_clist holds shm objects from different IPC namespaces.

This is a real pain when sysctl kernel.shm_rmid_forced = 1, because it
leads to use-after-free (reproducer exists).

This is an attempt to fix the problem by extending exit_shm mechanism to
handle shm's destroy from several IPC ns'es.

To achieve that we do several things:

1. add a namespace (non-refcounted) pointer to the struct shmid_kernel

2. during new shm object creation (newseg()/shmget syscall) we
   initialize this pointer by current task IPC ns

3. exit_shm() fully reworked such that it traverses over all shp's in
   task->sysvshm.shm_clist and gets IPC namespace not from current task
   as it was before but from shp's object itself, then call
   shm_destroy(shp, ns).

Note: We need to be really careful here, because as it was said before
(1), our pointer to IPC ns non-refcnt'ed.  To be on the safe side we
using special helper get_ipc_ns_not_zero() which allows to get IPC ns
refcounter only if IPC ns not in the "state of destruction".

Q/A

Q: Why can we access shp->ns memory using non-refcounted pointer?
A: Because shp object lifetime is always shorther than IPC namespace
   lifetime, so, if we get shp object from the task->sysvshm.shm_clist
   while holding task_lock(task) nobody can steal our namespace.

Q: Does this patch change semantics of unshare/setns/clone syscalls?
A: No. It's just fixes non-covered case when process may leave IPC
   namespace without getting task->sysvshm.shm_clist list cleaned up.

Link: https://lkml.kernel.org/r/67bb03e5-f79c-1815-e2bf-949c67047418@colorfullife.com
Link: https://lkml.kernel.org/r/20211109151501.4921-1-manfred@colorfullife.com
Fixes: ab602f7991 ("shm: make exit_shm work proportional to task activity")
Co-developed-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Alexander Mikhalitsyn <alexander.mikhalitsyn@virtuozzo.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-20 10:35:54 -08:00
Eric W. Biederman
fcb116bc43 signal: Replace force_fatal_sig with force_exit_sig when in doubt
Recently to prevent issues with SECCOMP_RET_KILL and similar signals
being changed before they are delivered SA_IMMUTABLE was added.

Unfortunately this broke debuggers[1][2] which reasonably expect
to be able to trap synchronous SIGTRAP and SIGSEGV even when
the target process is not configured to handle those signals.

Add force_exit_sig and use it instead of force_fatal_sig where
historically the code has directly called do_exit.  This has the
implementation benefits of going through the signal exit path
(including generating core dumps) without the danger of allowing
userspace to ignore or change these signals.

This avoids userspace regressions as older kernels exited with do_exit
which debuggers also can not intercept.

In the future is should be possible to improve the quality of
implementation of the kernel by changing some of these force_exit_sig
calls to force_fatal_sig.  That can be done where it matters on
a case-by-case basis with careful analysis.

Reported-by: Kyle Huey <me@kylehuey.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
[1] https://lkml.kernel.org/r/CAP045AoMY4xf8aC_4QU_-j7obuEPYgTcnQQP3Yxk=2X90jtpjw@mail.gmail.com
[2] https://lkml.kernel.org/r/20211117150258.GB5403@xsang-OptiPlex-9020
Fixes: 00b06da29c ("signal: Add SA_IMMUTABLE to ensure forced siganls do not get changed")
Fixes: a3616a3c02 ("signal/m68k: Use force_sigsegv(SIGSEGV) in fpsp040_die")
Fixes: 83a1f27ad7 ("signal/powerpc: On swapcontext failure force SIGSEGV")
Fixes: 9bc508cf07 ("signal/s390: Use force_sigsegv in default_trap_handler")
Fixes: 086ec444f8 ("signal/sparc32: In setup_rt_frame and setup_fram use force_fatal_sig")
Fixes: c317d306d5 ("signal/sparc32: Exit with a fatal signal when try_to_clear_window_buffer fails")
Fixes: 695dd0d634 ("signal/x86: In emulate_vsyscall force a signal instead of calling do_exit")
Fixes: 1fbd60df8a ("signal/vm86_32: Properly send SIGSEGV when the vm86 state cannot be saved.")
Fixes: 941edc5bf1 ("exit/syscall_user_dispatch: Send ordinary signals on failure")
Link: https://lkml.kernel.org/r/871r3dqfv8.fsf_-_@email.froward.int.ebiederm.org
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Kyle Huey <khuey@kylehuey.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-11-19 09:15:58 -06:00
Linus Torvalds
5147da902e Merge branch 'exit-cleanups-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull exit cleanups from Eric Biederman:
 "While looking at some issues related to the exit path in the kernel I
  found several instances where the code is not using the existing
  abstractions properly.

  This set of changes introduces force_fatal_sig a way of sending a
  signal and not allowing it to be caught, and corrects the misuse of
  the existing abstractions that I found.

  A lot of the misuse of the existing abstractions are silly things such
  as doing something after calling a no return function, rolling BUG by
  hand, doing more work than necessary to terminate a kernel thread, or
  calling do_exit(SIGKILL) instead of calling force_sig(SIGKILL).

  In the review a deficiency in force_fatal_sig and force_sig_seccomp
  where ptrace or sigaction could prevent the delivery of the signal was
  found. I have added a change that adds SA_IMMUTABLE to change that
  makes it impossible to interrupt the delivery of those signals, and
  allows backporting to fix force_sig_seccomp

  And Arnd found an issue where a function passed to kthread_run had the
  wrong prototype, and after my cleanup was failing to build."

* 'exit-cleanups-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (23 commits)
  soc: ti: fix wkup_m3_rproc_boot_thread return type
  signal: Add SA_IMMUTABLE to ensure forced siganls do not get changed
  signal: Replace force_sigsegv(SIGSEGV) with force_fatal_sig(SIGSEGV)
  exit/r8188eu: Replace the macro thread_exit with a simple return 0
  exit/rtl8712: Replace the macro thread_exit with a simple return 0
  exit/rtl8723bs: Replace the macro thread_exit with a simple return 0
  signal/x86: In emulate_vsyscall force a signal instead of calling do_exit
  signal/sparc32: In setup_rt_frame and setup_fram use force_fatal_sig
  signal/sparc32: Exit with a fatal signal when try_to_clear_window_buffer fails
  exit/syscall_user_dispatch: Send ordinary signals on failure
  signal: Implement force_fatal_sig
  exit/kthread: Have kernel threads return instead of calling do_exit
  signal/s390: Use force_sigsegv in default_trap_handler
  signal/vm86_32: Properly send SIGSEGV when the vm86 state cannot be saved.
  signal/vm86_32: Replace open coded BUG_ON with an actual BUG_ON
  signal/sparc: In setup_tsb_params convert open coded BUG into BUG
  signal/powerpc: On swapcontext failure force SIGSEGV
  signal/sh: Use force_sig(SIGKILL) instead of do_group_exit(SIGKILL)
  signal/mips: Update (_save|_restore)_fp_context to fail with -EFAULT
  signal/sparc32: Remove unreachable do_exit in do_sparc_fault
  ...
2021-11-10 16:15:54 -08:00
Linus Torvalds
a602285ac1 Merge branch 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull per signal_struct coredumps from Eric Biederman:
 "Current coredumps are mixed up with the exit code, the signal handling
  code, and the ptrace code making coredumps much more complicated than
  necessary and difficult to follow.

  This series of changes starts with ptrace_stop and cleans it up,
  making it easier to follow what is happening in ptrace_stop. Then
  cleans up the exec interactions with coredumps. Then cleans up the
  coredump interactions with exit. Finally the coredump interactions
  with the signal handling code is cleaned up.

  The first and last changes are bug fixes for minor bugs.

  I believe the fact that vfork followed by execve can kill the process
  the called vfork if exec fails is sufficient justification to change
  the userspace visible behavior.

  In previous discussions some of these changes were organized
  differently and individually appeared to make the code base worse. As
  currently written I believe they all stand on their own as cleanups
  and bug fixes.

  Which means that even if the worst should happen and the last change
  needs to be reverted for some unimaginable reason, the code base will
  still be improved.

  If the worst does not happen there are a more cleanups that can be
  made. Signals that generate coredumps can easily become eligible for
  short circuit delivery in complete_signal. The entire rendezvous for
  generating a coredump can move into get_signal. The function
  force_sig_info_to_task be written in a way that does not modify the
  signal handling state of the target task (because coredumps are
  eligible for short circuit delivery). Many of these future cleanups
  can be done another way but nothing so cleanly as if coredumps become
  per signal_struct"

* 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  coredump: Limit coredumps to a single thread group
  coredump:  Don't perform any cleanups before dumping core
  exit: Factor coredump_exit_mm out of exit_mm
  exec: Check for a pending fatal signal instead of core_state
  ptrace: Remove the unnecessary arguments from arch_ptrace_stop
  signal: Remove the bogus sigkill_pending in ptrace_stop
2021-11-03 12:15:29 -07:00
Linus Torvalds
552ebfe022 Merge tag 'for-5.16/parisc-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller:
 "Lots of new features and fixes:

   - Added TOC (table of content) support, which is a debugging feature
     which is either initiated by pressing the TOC button or via command
     in the BMC. If pressed the Linux built-in KDB/KGDB will be called
     (Sven Schnelle)

   - Fix CONFIG_PREEMPT (Sven)

   - Fix unwinder on 64-bit kernels (Sven)

   - Various kgdb fixes (Sven)

   - Added KFENCE support (me)

   - Switch to ARCH_STACKWALK implementation (me)

   - Fix ptrace check on syscall return (me)

   - Fix kernel crash with fixmaps on PA1.x machines (me)

   - Move thread_info into task struct, aka CONFIG_THREAD_INFO_IN_TASK
     (me)

   - Updated defconfigs

   - Smaller cleanups, including Makefile cleanups (Masahiro Yamada),
     use kthread_run() macro (Cai Huoqing), use swap() macro (Yihao
     Han)"

* tag 'for-5.16/parisc-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: (36 commits)
  parisc: Fix set_fixmap() on PA1.x CPUs
  parisc: Use swap() to swap values in setup_bootmem()
  parisc: Update defconfigs
  parisc: decompressor: clean up Makefile
  parisc: decompressor: remove repeated depenency of misc.o
  parisc: Remove unused constants from asm-offsets.c
  parisc/ftrace: use static key to enable/disable function graph tracer
  parisc/ftrace: set function trace function
  parisc: Make use of the helper macro kthread_run()
  parisc: mark xchg functions notrace
  parisc: enhance warning regarding usage of O_NONBLOCK
  parisc: Drop ifdef __KERNEL__ from non-uapi kernel headers
  parisc: Use PRIV_USER and PRIV_KERNEL in ptrace.h
  parisc: Use PRIV_USER in syscall.S
  parisc/kgdb: add kgdb_roundup() to make kgdb work with idle polling
  parisc: Move thread_info into task struct
  parisc: add support for TOC (transfer of control)
  parisc/firmware: add functions to retrieve TOC data
  parisc: add PIM TOC data structures
  parisc: move virt_map macro to assembly.h
  ...
2021-11-01 16:51:13 -07:00
Vincent Guittot
e60b56e46b sched/fair: Wait before decaying max_newidle_lb_cost
Decay max_newidle_lb_cost only when it has not been updated for a while
and ensure to not decay a recently changed value.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-4-vincent.guittot@linaro.org
2021-10-31 11:11:38 +01:00
Helge Deller
9cc2fa4f4a task_stack: Fix end_of_stack() for architectures with upwards-growing stack
The function end_of_stack() returns a pointer to the last entry of a
stack. For architectures like parisc where the stack grows upwards
return the pointer to the highest address in the stack.

Without this change I faced a crash on parisc, because the stackleak
functionality wrote STACKLEAK_POISON to the lowest address and thus
overwrote the first 4 bytes of the task_struct which included the
TIF_FLAGS.

Signed-off-by: Helge Deller <deller@gmx.de>
2021-10-30 23:11:01 +02:00
Eric W. Biederman
26d5badbcc signal: Implement force_fatal_sig
Add a simple helper force_fatal_sig that causes a signal to be
delivered to a process as if the signal handler was set to SIG_DFL.

Reimplement force_sigsegv based upon this new helper.  This fixes
force_sigsegv so that when it forces the default signal handler
to be used the code now forces the signal to be unblocked as well.

Reusing the tested logic in force_sig_info_to_task that was built for
force_sig_seccomp this makes the implementation trivial.

This is interesting both because it makes force_sigsegv simpler and
because there are a couple of buggy places in the kernel that call
do_exit(SIGILL) or do_exit(SIGSYS) because there is no straight
forward way today for those places to simply force the exit of a
process with the chosen signal.  Creating force_fatal_sig allows
those places to be implemented with normal signal exits.

Link: https://lkml.kernel.org/r/20211020174406.17889-13-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-10-29 14:31:33 -05:00
Barry Song
778c558f49 sched: Add cluster scheduler level in core and related Kconfig for ARM64
This patch adds scheduler level for clusters and automatically enables
the load balance among clusters. It will directly benefit a lot of
workload which loves more resources such as memory bandwidth, caches.

Testing has widely been done in two different hardware configurations of
Kunpeng920:

 24 cores in one NUMA(6 clusters in each NUMA node);
 32 cores in one NUMA(8 clusters in each NUMA node)

Workload is running on either one NUMA node or four NUMA nodes, thus,
this can estimate the effect of cluster spreading w/ and w/o NUMA load
balance.

* Stream benchmark:

4threads stream (on 1NUMA * 24cores = 24cores)
                stream                 stream
                w/o patch              w/ patch
MB/sec copy     29929.64 (   0.00%)    32932.68 (  10.03%)
MB/sec scale    29861.10 (   0.00%)    32710.58 (   9.54%)
MB/sec add      27034.42 (   0.00%)    32400.68 (  19.85%)
MB/sec triad    27225.26 (   0.00%)    31965.36 (  17.41%)

6threads stream (on 1NUMA * 24cores = 24cores)
                stream                 stream
                w/o patch              w/ patch
MB/sec copy     40330.24 (   0.00%)    42377.68 (   5.08%)
MB/sec scale    40196.42 (   0.00%)    42197.90 (   4.98%)
MB/sec add      37427.00 (   0.00%)    41960.78 (  12.11%)
MB/sec triad    37841.36 (   0.00%)    42513.64 (  12.35%)

12threads stream (on 1NUMA * 24cores = 24cores)
                stream                 stream
                w/o patch              w/ patch
MB/sec copy     52639.82 (   0.00%)    53818.04 (   2.24%)
MB/sec scale    52350.30 (   0.00%)    53253.38 (   1.73%)
MB/sec add      53607.68 (   0.00%)    55198.82 (   2.97%)
MB/sec triad    54776.66 (   0.00%)    56360.40 (   2.89%)

Thus, it could help memory-bound workload especially under medium load.
Similar improvement is also seen in lkp-pbzip2:

* lkp-pbzip2 benchmark

2-96 threads (on 4NUMA * 24cores = 96cores)
                  lkp-pbzip2              lkp-pbzip2
                  w/o patch               w/ patch
Hmean     tput-2   11062841.57 (   0.00%)  11341817.51 *   2.52%*
Hmean     tput-5   26815503.70 (   0.00%)  27412872.65 *   2.23%*
Hmean     tput-8   41873782.21 (   0.00%)  43326212.92 *   3.47%*
Hmean     tput-12  61875980.48 (   0.00%)  64578337.51 *   4.37%*
Hmean     tput-21 105814963.07 (   0.00%) 111381851.01 *   5.26%*
Hmean     tput-30 150349470.98 (   0.00%) 156507070.73 *   4.10%*
Hmean     tput-48 237195937.69 (   0.00%) 242353597.17 *   2.17%*
Hmean     tput-79 360252509.37 (   0.00%) 362635169.23 *   0.66%*
Hmean     tput-96 394571737.90 (   0.00%) 400952978.48 *   1.62%*

2-24 threads (on 1NUMA * 24cores = 24cores)
                 lkp-pbzip2               lkp-pbzip2
                 w/o patch                w/ patch
Hmean     tput-2   11071705.49 (   0.00%)  11296869.10 *   2.03%*
Hmean     tput-4   20782165.19 (   0.00%)  21949232.15 *   5.62%*
Hmean     tput-6   30489565.14 (   0.00%)  33023026.96 *   8.31%*
Hmean     tput-8   40376495.80 (   0.00%)  42779286.27 *   5.95%*
Hmean     tput-12  61264033.85 (   0.00%)  62995632.78 *   2.83%*
Hmean     tput-18  86697139.39 (   0.00%)  86461545.74 (  -0.27%)
Hmean     tput-24 104854637.04 (   0.00%) 104522649.46 *  -0.32%*

In the case of 6 threads and 8 threads, we see the greatest performance
improvement.

Similar improvement can be seen on lkp-pixz though the improvement is
smaller:

* lkp-pixz benchmark

2-24 threads lkp-pixz (on 1NUMA * 24cores = 24cores)
                  lkp-pixz               lkp-pixz
                  w/o patch              w/ patch
Hmean     tput-2   6486981.16 (   0.00%)  6561515.98 *   1.15%*
Hmean     tput-4  11645766.38 (   0.00%) 11614628.43 (  -0.27%)
Hmean     tput-6  15429943.96 (   0.00%) 15957350.76 *   3.42%*
Hmean     tput-8  19974087.63 (   0.00%) 20413746.98 *   2.20%*
Hmean     tput-12 28172068.18 (   0.00%) 28751997.06 *   2.06%*
Hmean     tput-18 39413409.54 (   0.00%) 39896830.55 *   1.23%*
Hmean     tput-24 49101815.85 (   0.00%) 49418141.47 *   0.64%*

* SPECrate benchmark

4,8,16 copies mcf_r(on 1NUMA * 32cores = 32cores)
		Base     	 	Base
		Run Time   	 	Rate
		-------  	 	---------
4 Copies	w/o 580 (w/ 570)       	w/o 11.1 (w/ 11.3)
8 Copies	w/o 647 (w/ 605)       	w/o 20.0 (w/ 21.4, +7%)
16 Copies	w/o 844 (w/ 844)       	w/o 30.6 (w/ 30.6)

32 Copies(on 4NUMA * 32 cores = 128cores)
[w/o patch]
                 Base     Base        Base
Benchmarks       Copies  Run Time     Rate
--------------- -------  ---------  ---------
500.perlbench_r      32        584       87.2  *
502.gcc_r            32        503       90.2  *
505.mcf_r            32        745       69.4  *
520.omnetpp_r        32       1031       40.7  *
523.xalancbmk_r      32        597       56.6  *
525.x264_r            1         --            CE
531.deepsjeng_r      32        336      109    *
541.leela_r          32        556       95.4  *
548.exchange2_r      32        513      163    *
557.xz_r             32        530       65.2  *
 Est. SPECrate2017_int_base              80.3

[w/ patch]
                  Base     Base        Base
Benchmarks       Copies  Run Time     Rate
--------------- -------  ---------  ---------
500.perlbench_r      32        580      87.8 (+0.688%)  *
502.gcc_r            32        477      95.1 (+5.432%)  *
505.mcf_r            32        644      80.3 (+13.574%) *
520.omnetpp_r        32        942      44.6 (+9.58%)   *
523.xalancbmk_r      32        560      60.4 (+6.714%%) *
525.x264_r            1         --           CE
531.deepsjeng_r      32        337      109  (+0.000%) *
541.leela_r          32        554      95.6 (+0.210%) *
548.exchange2_r      32        515      163  (+0.000%) *
557.xz_r             32        524      66.0 (+1.227%) *
 Est. SPECrate2017_int_base              83.7 (+4.062%)

On the other hand, it is slightly helpful to CPU-bound tasks like
kernbench:

* 24-96 threads kernbench (on 4NUMA * 24cores = 96cores)
                     kernbench              kernbench
                     w/o cluster            w/ cluster
Min       user-24    12054.67 (   0.00%)    12024.19 (   0.25%)
Min       syst-24     1751.51 (   0.00%)     1731.68 (   1.13%)
Min       elsp-24      600.46 (   0.00%)      598.64 (   0.30%)
Min       user-48    12361.93 (   0.00%)    12315.32 (   0.38%)
Min       syst-48     1917.66 (   0.00%)     1892.73 (   1.30%)
Min       elsp-48      333.96 (   0.00%)      332.57 (   0.42%)
Min       user-96    12922.40 (   0.00%)    12921.17 (   0.01%)
Min       syst-96     2143.94 (   0.00%)     2110.39 (   1.56%)
Min       elsp-96      211.22 (   0.00%)      210.47 (   0.36%)
Amean     user-24    12063.99 (   0.00%)    12030.78 *   0.28%*
Amean     syst-24     1755.20 (   0.00%)     1735.53 *   1.12%*
Amean     elsp-24      601.60 (   0.00%)      600.19 (   0.23%)
Amean     user-48    12362.62 (   0.00%)    12315.56 *   0.38%*
Amean     syst-48     1921.59 (   0.00%)     1894.95 *   1.39%*
Amean     elsp-48      334.10 (   0.00%)      332.82 *   0.38%*
Amean     user-96    12925.27 (   0.00%)    12922.63 (   0.02%)
Amean     syst-96     2146.66 (   0.00%)     2122.20 *   1.14%*
Amean     elsp-96      211.96 (   0.00%)      211.79 (   0.08%)

Note this patch isn't an universal win, it might hurt those workload
which can benefit from packing. Though tasks which want to take
advantages of lower communication latency of one cluster won't
necessarily been packed in one cluster while kernel is not aware of
clusters, they have some chance to be randomly packed. But this
patch will make them more likely spread.

Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2021-10-15 11:25:16 +02:00
Zhang Qiao
4ef0c5c6b5 kernel/sched: Fix sched_fork() access an invalid sched_task_group
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.

	parent doing fork()      | someone moving the parent
				 | to another cgroup
  -------------------------------+-------------------------------
  copy_process()
      + dup_task_struct()<1>
				  parent move to another cgroup,
				  and free the old cgroup. <2>
      + sched_fork()
	+ __set_task_cpu()<3>
	+ task_fork_fair()
	  + sched_slice()<4>

In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:

  (1) parent copy its sched_task_group to child at <1>;

  (2) someone move the parent to another cgroup and free the old
      cgroup at <2>;

  (3) the sched_task_group and cfs_rq that belong to the old cgroup
      will be accessed at <3> and <4>, which cause a panic:

  [] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
  [] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
  [] Oops: 0000 [#1] SMP PTI
  [] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G           OE    --------- -  - 4.18.0.x86_64+ #1
  [] RIP: 0010:sched_slice+0x84/0xc0

  [] Call Trace:
  []  task_fork_fair+0x81/0x120
  []  sched_fork+0x132/0x240
  []  copy_process.part.5+0x675/0x20e0
  []  ? __handle_mm_fault+0x63f/0x690
  []  _do_fork+0xcd/0x3b0
  []  do_syscall_64+0x5d/0x1d0
  []  entry_SYSCALL_64_after_hwframe+0x65/0xca
  [] RIP: 0033:0x7f04418cd7e1

Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().

Fixes: 8323f26ce3 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
2021-10-14 13:09:58 +02:00
Peter Zijlstra
5de62ea84a sched,livepatch: Use wake_up_if_idle()
Make sure to prod idle CPUs so they call klp_update_patch_state().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Petr Mladek <pmladek@suse.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929151723.162004989@infradead.org
2021-10-14 13:09:25 +02:00
Eric W. Biederman
0258b5fd7c coredump: Limit coredumps to a single thread group
Today when a signal is delivered with a handler of SIG_DFL whose
default behavior is to generate a core dump not only that process but
every process that shares the mm is killed.

In the case of vfork this looks like a real world problem.  Consider
the following well defined sequence.

	if (vfork() == 0) {
		execve(...);
		_exit(EXIT_FAILURE);
	}

If a signal that generates a core dump is received after vfork but
before the execve changes the mm the process that called vfork will
also be killed (as the mm is shared).

Similarly if the execve fails after the point of no return the kernel
delivers SIGSEGV which will kill both the exec'ing process and because
the mm is shared the process that called vfork as well.

As far as I can tell this behavior is a violation of people's
reasonable expectations, POSIX, and is unnecessarily fragile when the
system is low on memory.

Solve this by making a userspace visible change to only kill a single
process/thread group.  This is possible because Jann Horn recently
modified[1] the coredump code so that the mm can safely be modified
while the coredump is happening.  With LinuxThreads long gone I don't
expect anyone to have a notice this behavior change in practice.

To accomplish this move the core_state pointer from mm_struct to
signal_struct, which allows different thread groups to coredump
simultatenously.

In zap_threads remove the work to kill anything except for the current
thread group.

v2: Remove core_state from the VM_BUG_ON_MM print to fix
    compile failure when CONFIG_DEBUG_VM is enabled.
    Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>

[1] a07279c9a8 ("binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot")
Fixes: d89f3847def4 ("[PATCH] thread-aware coredumps, 2.5.43-C3")
History-tree: git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Link: https://lkml.kernel.org/r/87y27mvnke.fsf@disp2133
Link: https://lkml.kernel.org/r/20211007144701.67592574@canb.auug.org.au
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-08 12:06:02 -05:00
Thomas Gleixner
8d491de6ed sched: Move mmdrop to RCU on RT
mmdrop() is invoked from finish_task_switch() by the incoming task to drop
the mm which was handed over by the previous task. mmdrop() can be quite
expensive which prevents an incoming real-time task from getting useful
work done.

Provide mmdrop_sched() which maps to mmdrop() on !RT kernels. On RT kernels
it delagates the eventually required invocation of __mmdrop() to RCU.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.648582026@linutronix.de
2021-10-05 15:52:09 +02:00
Linus Torvalds
2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
Nicholas Piggin
1e1c15839d fs/epoll: use a per-cpu counter for user's watches count
This counter tracks the number of watches a user has, to compare against
the 'max_user_watches' limit. This causes a scalability bottleneck on
SPECjbb2015 on large systems as there is only one user. Changing to a
per-cpu counter increases throughput of the benchmark by about 30% on a
16-socket, > 1000 thread system.

[rdunlap@infradead.org: fix build errors in kernel/user.c when CONFIG_EPOLL=n]
[npiggin@gmail.com: move ifdefs into wrapper functions, slightly improve panic message]
  Link: https://lkml.kernel.org/r/1628051945.fens3r99ox.astroid@bobo.none
[akpm@linux-foundation.org: tweak user_epoll_alloc(), per Guenter]
  Link: https://lkml.kernel.org/r/20210804191421.GA1900577@roeck-us.net

Link: https://lkml.kernel.org/r/20210802032013.2751916-1-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reported-by: Anton Blanchard <anton@ozlabs.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:27 -07:00
Linus Torvalds
14726903c8 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "173 patches.

  Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
  pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
  bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
  hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
  oom-kill, migration, ksm, percpu, vmstat, and madvise)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
  mm/madvise: add MADV_WILLNEED to process_madvise()
  mm/vmstat: remove unneeded return value
  mm/vmstat: simplify the array size calculation
  mm/vmstat: correct some wrong comments
  mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
  selftests: vm: add COW time test for KSM pages
  selftests: vm: add KSM merging time test
  mm: KSM: fix data type
  selftests: vm: add KSM merging across nodes test
  selftests: vm: add KSM zero page merging test
  selftests: vm: add KSM unmerge test
  selftests: vm: add KSM merge test
  mm/migrate: correct kernel-doc notation
  mm: wire up syscall process_mrelease
  mm: introduce process_mrelease system call
  memblock: make memblock_find_in_range method private
  mm/mempolicy.c: use in_task() in mempolicy_slab_node()
  mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
  mm/mempolicy: advertise new MPOL_PREFERRED_MANY
  mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
  ...
2021-09-03 10:08:28 -07:00
Vasily Averin
55a68c8239 memcg: replace in_interrupt() by !in_task() in active_memcg()
set_active_memcg() uses in_interrupt() check to select proper storage for
cgroup: pointer on task struct or per-cpu pointer.

It isn't fully correct: obsoleted in_interrupt() includes tasks with
disabled BH.  It's better to use '!in_task()' instead.

Link: https://lkml.org/lkml/2021/7/26/487
Link: https://lkml.kernel.org/r/ed4448b0-4970-616f-7368-ef9dd3cb628d@virtuozzo.com
Fixes: 37d5985c00 ("mm: kmem: prepare remote memcg charging infra for interrupt contexts")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Matthew Wilcox (Oracle)
4f3eaf452a mm: report a more useful address for reclaim acquisition
A recent lockdep report included these lines:

[   96.177910] 3 locks held by containerd/770:
[   96.177934]  #0: ffff88810815ea28 (&mm->mmap_lock#2){++++}-{3:3},
at: do_user_addr_fault+0x115/0x770
[   96.177999]  #1: ffffffff82915020 (rcu_read_lock){....}-{1:2}, at:
get_swap_device+0x33/0x140
[   96.178057]  #2: ffffffff82955ba0 (fs_reclaim){+.+.}-{0:0}, at:
__fs_reclaim_acquire+0x5/0x30

While it was not useful to that bug report to know where the reclaim lock
had been acquired, it might be useful under other circumstances.  Allow
the caller of __fs_reclaim_acquire to specify the instruction pointer to
use.

Link: https://lkml.kernel.org/r/20210719185709.1755149-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:10 -07:00
Linus Torvalds
bcfeebbff3 Merge branch 'exit-cleanups-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull exit cleanups from Eric Biederman:
 "In preparation of doing something about PTRACE_EVENT_EXIT I have
  started cleaning up various pieces of code related to do_exit. Most of
  that code I did not manage to get tested and reviewed before the merge
  window opened but a handful of very useful cleanups are ready to be
  merged.

  The first change is simply the removal of the bdflush system call. The
  code has now been disabled long enough that even the oldest userspace
  working userspace setups anyone can find to test are fine with the
  bdflush system call being removed.

  Changing m68k fsp040_die to use force_sigsegv(SIGSEGV) instead of
  calling do_exit directly is interesting only in that it is nearly the
  most difficult of the incorrect uses of do_exit to remove.

  The change to the seccomp code to simply send a signal instead of
  calling do_coredump directly is a very nice little cleanup made
  possible by realizing the existing signal sending helpers were missing
  a little bit of functionality that is easy to provide"

* 'exit-cleanups-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  signal/seccomp: Dump core when there is only one live thread
  signal/seccomp: Refactor seccomp signal and coredump generation
  signal/m68k: Use force_sigsegv(SIGSEGV) in fpsp040_die
  exit/bdflush: Remove the deprecated bdflush system call
2021-09-01 14:52:05 -07:00
Linus Torvalds
48983701a1 Merge branch 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo si_trapno updates from Eric Biederman:
 "The full set of si_trapno changes was not appropriate as a fix for the
  newly added SIGTRAP TRAP_PERF, and so I postponed the rest of the
  related cleanups.

  This is the rest of the cleanups for si_trapno that reduces it from
  being a really weird arch special case that is expect to be always
  present (but isn't) on the architectures that support it to being yet
  another field in the _sigfault union of struct siginfo.

  The changes have been reviewed and marinated in linux-next. With the
  removal of this awkward special case new code (like SIGTRAP TRAP_PERF)
  that works across architectures should be easier to write and
  maintain"

* 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  signal: Rename SIL_PERF_EVENT SIL_FAULT_PERF_EVENT for consistency
  signal: Verify the alignment and size of siginfo_t
  signal: Remove the generic __ARCH_SI_TRAPNO support
  signal/alpha: si_trapno is only used with SIGFPE and SIGTRAP TRAP_UNK
  signal/sparc: si_trapno is only used with SIGILL ILL_ILLTRP
  arm64: Add compile-time asserts for siginfo_t offsets
  arm: Add compile-time asserts for siginfo_t offsets
  sparc64: Add compile-time asserts for siginfo_t offsets
2021-09-01 14:42:36 -07:00
Linus Torvalds
8596e589b7 Merge tag 'timers-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "Updates for timekeeping, timers and related drivers:

  Core code:

   - Cure a couple of correctness issues in the posix CPU timer code to
     prevent that the tick dependency for NOHZ full is kept alive for no
     reason.

   - Avoid expensive double reprogramming of the clockevent device in
     hrtimer_start_range_ns().

   - Avoid pointless SMP function calls when the clock was set to avoid
     disturbing CPUs which do not have any affected timers queued.

   - Make the clocksource watchdog test work correctly when CONFIG_HZ is
     less than 100.

  Drivers:

   - Prefer the ARM architected timer over the Exynos timer which is way
     more expensive to access.

   - Add device tree bindings for new Ingenic SoCs

   - The usual improvements and cleanups all over the place"

* tag 'timers-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
  clocksource: Make clocksource watchdog test safe for slow-HZ systems
  dt-bindings: timer: Add ABIs for new Ingenic SoCs
  clocksource/drivers/fttmr010: Pass around less pointers
  clocksource/drivers/mediatek: Optimize systimer irq clear flow on shutdown
  clocksource/drivers/ingenic: Use bitfield macro helpers
  clocksource/drivers/sh_cmt: Fix wrong setting if don't request IRQ for clock source channel
  dt-bindings: timer: convert rockchip,rk-timer.txt to YAML
  clocksource/drivers/exynos_mct: Mark MCT device as CLOCK_EVT_FEAT_PERCPU
  clocksource/drivers/exynos_mct: Prioritise Arm arch timer on arm64
  hrtimer: Unbreak hrtimer_force_reprogram()
  hrtimer: Use raw_cpu_ptr() in clock_was_set()
  hrtimer: Avoid more SMP function calls in clock_was_set()
  hrtimer: Avoid unnecessary SMP function calls in clock_was_set()
  hrtimer: Add bases argument to clock_was_set()
  time/timekeeping: Avoid invoking clock_was_set() twice
  timekeeping: Distangle resume and clock-was-set events
  timerfd: Provide timerfd_resume()
  hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case
  hrtimer: Ensure timerfd notification for HIGHRES=n
  hrtimer: Consolidate reprogramming code
  ...
2021-08-30 15:31:33 -07:00
Linus Torvalds
e5e726f7bb Merge tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking and atomics updates from Thomas Gleixner:
 "The regular pile:

   - A few improvements to the mutex code

   - Documentation updates for atomics to clarify the difference between
     cmpxchg() and try_cmpxchg() and to explain the forward progress
     expectations.

   - Simplification of the atomics fallback generator

   - The addition of arch_atomic_long*() variants and generic arch_*()
     bitops based on them.

   - Add the missing might_sleep() invocations to the down*() operations
     of semaphores.

  The PREEMPT_RT locking core:

   - Scheduler updates to support the state preserving mechanism for
     'sleeping' spin- and rwlocks on RT.

     This mechanism is carefully preserving the state of the task when
     blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups
     targeted at the same task into account. The preserved or updated
     (via a regular wakeup) state is restored when the lock has been
     acquired.

   - Restructuring of the rtmutex code so it can be utilized and
     extended for the RT specific lock variants.

   - Restructuring of the ww_mutex code to allow sharing of the ww_mutex
     specific functionality for rtmutex based ww_mutexes.

   - Header file disentangling to allow substitution of the regular lock
     implementations with the PREEMPT_RT variants without creating an
     unmaintainable #ifdef mess.

   - Shared base code for the PREEMPT_RT specific rw_semaphore and
     rwlock implementations.

     Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT
     implementation is writer unfair because it is infeasible to do
     priority inheritance on multiple readers. Experience over the years
     has shown that real-time workloads are not the typical workloads
     which are sensitive to writer starvation.

     The alternative solution would be to allow only a single reader
     which has been tried and discarded as it is a major bottleneck
     especially for mmap_sem. Aside of that many of the writer
     starvation critical usage sites have been converted to a writer
     side mutex/spinlock and RCU read side protections in the past
     decade so that the issue is less prominent than it used to be.

   - The actual rtmutex based lock substitutions for PREEMPT_RT enabled
     kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
     rwlock_t. The spin/rw_lock*() functions disable migration across
     the critical section to preserve the existing semantics vs per-CPU
     variables.

   - Rework of the futex REQUEUE_PI mechanism to handle the case of
     early wake-ups which interleave with a re-queue operation to
     prevent the situation that a task would be blocked on both the
     rtmutex associated to the outer futex and the rtmutex based hash
     bucket spinlock.

     While this situation cannot happen on !RT enabled kernels the
     changes make the underlying concurrency problems easier to
     understand in general. As a result the difference between !RT and
     RT kernels is reduced to the handling of waiting for the critical
     section. !RT kernels simply spin-wait as before and RT kernels
     utilize rcu_wait().

   - The substitution of local_lock for PREEMPT_RT with a spinlock which
     protects the critical section while staying preemptible. The CPU
     locality is established by disabling migration.

  The underlying concepts of this code have been in use in PREEMPT_RT for
  way more than a decade. The code has been refactored several times over
  the years and this final incarnation has been optimized once again to be
  as non-intrusive as possible, i.e. the RT specific parts are mostly
  isolated.

  It has been extensively tested in the 5.14-rt patch series and it has
  been verified that !RT kernels are not affected by these changes"

* tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits)
  locking/rtmutex: Return success on deadlock for ww_mutex waiters
  locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes
  locking/rtmutex: Dequeue waiter on ww_mutex deadlock
  locking/rtmutex: Dont dereference waiter lockless
  locking/semaphore: Add might_sleep() to down_*() family
  locking/ww_mutex: Initialize waiter.ww_ctx properly
  static_call: Update API documentation
  locking/local_lock: Add PREEMPT_RT support
  locking/spinlock/rt: Prepare for RT local_lock
  locking/rtmutex: Add adaptive spinwait mechanism
  locking/rtmutex: Implement equal priority lock stealing
  preempt: Adjust PREEMPT_LOCK_OFFSET for RT
  locking/rtmutex: Prevent lockdep false positive with PI futexes
  futex: Prevent requeue_pi() lock nesting issue on RT
  futex: Simplify handle_early_requeue_pi_wakeup()
  futex: Reorder sanity checks in futex_requeue()
  futex: Clarify comment in futex_requeue()
  futex: Restructure futex_requeue()
  futex: Correct the number of requeued waiters for PI
  futex: Remove bogus condition for requeue PI
  ...
2021-08-30 14:26:36 -07:00
Linus Torvalds
5d3c0db459 Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - The biggest change in this cycle is scheduler support for asymmetric
   scheduling affinity, to support the execution of legacy 32-bit tasks
   on AArch32 systems that also have 64-bit-only CPUs.

   Architectures can fill in this functionality by defining their own
   task_cpu_possible_mask(p). When this is done, the scheduler will make
   sure the task will only be scheduled on CPUs that support it.

   (The actual arm64 specific changes are not part of this tree.)

   For other architectures there will be no change in functionality.

 - Add cgroup SCHED_IDLE support

 - Increase node-distance flexibility & delay determining it until a CPU
   is brought online. (This enables platforms where node distance isn't
   final until the CPU is only.)

 - Deadline scheduler enhancements & fixes

 - Misc fixes & cleanups.

* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  eventfd: Make signal recursion protection a task bit
  sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
  sched: Introduce dl_task_check_affinity() to check proposed affinity
  sched: Allow task CPU affinity to be restricted on asymmetric systems
  sched: Split the guts of sched_setaffinity() into a helper function
  sched: Introduce task_struct::user_cpus_ptr to track requested affinity
  sched: Reject CPU affinity changes based on task_cpu_possible_mask()
  cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
  cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
  cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
  sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
  sched: Cgroup SCHED_IDLE support
  sched/topology: Skip updating masks for non-online nodes
  sched: Replace deprecated CPU-hotplug functions.
  sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
  sched: Fix UCLAMP_FLAG_IDLE setting
  sched/deadline: Fix missing clock update in migrate_task_rq_dl()
  sched/fair: Avoid a second scan of target in select_idle_cpu
  sched/fair: Use prev instead of new target as recent_used_cpu
  sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
  ...
2021-08-30 13:42:10 -07:00
Eric W. Biederman
307d522f5e signal/seccomp: Refactor seccomp signal and coredump generation
Factor out force_sig_seccomp from the seccomp signal generation and
place it in kernel/signal.c.  The function force_sig_seccomp takes a
parameter force_coredump to indicate that the sigaction field should
be reset to SIGDFL so that a coredump will be generated when the
signal is delivered.

force_sig_seccomp is then used to replace both seccomp_send_sigsys
and seccomp_init_siginfo.

force_sig_info_to_task gains an extra parameter to force using
the default signal action.

With this change seccomp is no longer a special case and there
becomes exactly one place do_coredump is called from.

Further it no longer becomes necessary for __seccomp_filter
to call do_group_exit.

Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/87r1gr6qc4.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-08-26 10:30:12 -05:00