Commit Graph

68 Commits

Author SHA1 Message Date
Linus Torvalds
c0842fbc1b random32: move the pseudo-random 32-bit definitions to prandom.h
The addition of percpu.h to the list of includes in random.h revealed
some circular dependencies on arm64 and possibly other platforms.  This
include was added solely for the pseudo-random definitions, which have
nothing to do with the rest of the definitions in this file but are
still there for legacy reasons.

This patch moves the pseudo-random parts to linux/prandom.h and the
percpu.h include with it, which is now guarded by _LINUX_PRANDOM_H and
protected against recursive inclusion.

A further cleanup step would be to remove this from <linux/random.h>
entirely, and make people who use the prandom infrastructure include
just the new header file.  That's a bit of a churn patch, but grepping
for "prandom_" and "next_pseudo_random32" "struct rnd_state" should
catch most users.

But it turns out that that nice cleanup step is fairly painful, because
a _lot_ of code currently seems to depend on the implicit include of
<linux/random.h>, which can currently come in a lot of ways, including
such fairly core headfers as <linux/net.h>.

So the "nice cleanup" part may or may never happen.

Fixes: 1c9df907da ("random: fix circular include dependency on arm64 after addition of percpu.h")
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-03 23:24:26 -07:00
Willy Tarreau
1c9df907da random: fix circular include dependency on arm64 after addition of percpu.h
Daniel Díaz and Kees Cook independently reported that commit
f227e3ec3b ("random32: update the net random state on interrupt and
activity") broke arm64 due to a circular dependency on include files
since the addition of percpu.h in random.h.

The correct fix would definitely be to move all the prandom32 stuff out
of random.h but for backporting, a smaller solution is preferred.

This one replaces linux/percpu.h with asm/percpu.h, and this fixes the
problem on x86_64, arm64, arm, and mips.  Note that moving percpu.h
around didn't change anything and that removing it entirely broke
differently.  When backporting, such options might still be considered
if this patch fails to help.

[ It turns out that an alternate fix seems to be to just remove the
  troublesome <asm/pointer_auth.h> remove from the arm64 <asm/smp.h>
  that causes the circular dependency.

  But we might as well do the whole belt-and-suspenders thing, and
  minimize inclusion in <linux/random.h> too. Either will fix the
  problem, and both are good changes.   - Linus ]

Reported-by: Daniel Díaz <daniel.diaz@linaro.org>
Reported-by: Kees Cook <keescook@chromium.org>
Tested-by: Marc Zyngier <maz@kernel.org>
Fixes: f227e3ec3b
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-30 09:15:17 -07:00
Linus Torvalds
83bdc7275e random32: remove net_rand_state from the latent entropy gcc plugin
It turns out that the plugin right now ends up being really unhappy
about the change from 'static' to 'extern' storage that happened in
commit f227e3ec3b ("random32: update the net random state on interrupt
and activity").

This is probably a trivial fix for the latent_entropy plugin, but for
now, just remove net_rand_state from the list of things the plugin
worries about.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-29 19:11:00 -07:00
Willy Tarreau
f227e3ec3b random32: update the net random state on interrupt and activity
This modifies the first 32 bits out of the 128 bits of a random CPU's
net_rand_state on interrupt or CPU activity to complicate remote
observations that could lead to guessing the network RNG's internal
state.

Note that depending on some network devices' interrupt rate moderation
or binding, this re-seeding might happen on every packet or even almost
never.

In addition, with NOHZ some CPUs might not even get timer interrupts,
leaving their local state rarely updated, while they are running
networked processes making use of the random state.  For this reason, we
also perform this update in update_process_times() in order to at least
update the state when there is user or system activity, since it's the
only case we care about.

Reported-by: Amit Klein <aksecurity@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-29 10:35:37 -07:00
Mark Rutland
253d3194c2 random: add arch_get_random_*long_early()
Some architectures (e.g. arm64) can have heterogeneous CPUs, and the
boot CPU may be able to provide entropy while secondary CPUs cannot. On
such systems, arch_get_random_long() and arch_get_random_seed_long()
will fail unless support for RNG instructions has been detected on all
CPUs. This prevents the boot CPU from being able to provide
(potentially) trusted entropy when seeding the primary CRNG.

To make it possible to seed the primary CRNG from the boot CPU without
adversely affecting the runtime versions of arch_get_random_long() and
arch_get_random_seed_long(), this patch adds new early versions of the
functions used when initializing the primary CRNG.

Default implementations are provided atop of the existing
arch_get_random_long() and arch_get_random_seed_long() so that only
architectures with such constraints need to provide the new helpers.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200210130015.17664-3-mark.rutland@arm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-02-27 23:21:52 -05:00
Richard Henderson
904caa6413 linux/random.h: Mark CONFIG_ARCH_RANDOM functions __must_check
We must not use the pointer output without validating the
success of the random read.

Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200110145422.49141-7-broonie@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-01-25 12:18:50 -05:00
Richard Henderson
66f5ae899a linux/random.h: Use false with bool
Keep the generic fallback versions in sync with the other architecture
specific implementations and use the proper name for false.

Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200110145422.49141-6-broonie@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-01-25 12:18:50 -05:00
Richard Henderson
647f50d5d9 linux/random.h: Remove arch_has_random, arch_has_random_seed
The arm64 version of archrandom.h will need to be able to test for
support and read the random number without preemption, so a separate
query predicate is not practical.

Since this part of the generic interface is unused, remove it.

Signed-off-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200110145422.49141-5-broonie@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-01-25 12:18:50 -05:00
Hsin-Yi Wang
428826f535 fdt: add support for rng-seed
Introducing a chosen node, rng-seed, which is an entropy that can be
passed to kernel called very early to increase initial device
randomness. Bootloader should provide this entropy and the value is
read from /chosen/rng-seed in DT.

Obtain of_fdt_crc32 for CRC check after early_init_dt_scan_nodes(),
since early_init_dt_scan_chosen() would modify fdt to erase rng-seed.

Add a new interface add_bootloader_randomness() for rng-seed use case.
Depends on whether the seed is trustworthy, rng seed would be passed to
add_hwgenerator_randomness(). Otherwise it would be passed to
add_device_randomness(). Decision is controlled by kernel config
RANDOM_TRUST_BOOTLOADER.

Signed-off-by: Hsin-Yi Wang <hsinyi@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu> # drivers/char/random.c
Signed-off-by: Will Deacon <will@kernel.org>
2019-08-23 16:39:26 +01:00
Linus Torvalds
80111bfb67 Merge tag 's390-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull more s390 updates from Martin Schwidefsky:

 - Enhancements for the QDIO layer

 - Remove the RCP trace event

 - Avoid three build issues

 - Move the defconfig to the configs directory

* tag 's390-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
  s390: move arch/s390/defconfig to arch/s390/configs/defconfig
  s390/qdio: optimize state inspection of HW-owned SBALs
  s390/qdio: use get_buf_state() in debug_get_buf_state()
  s390/qdio: allow to scan all Output SBALs in one go
  s390/cio: Remove tracing for rchp instruction
  s390/kasan: adapt disabled_wait usage to avoid build error
  latent_entropy: avoid build error when plugin cflags are not set
  s390/boot: fix compiler error due to missing awk strtonum
2019-05-17 10:08:59 -07:00
Vasily Gorbik
7e756f423a latent_entropy: avoid build error when plugin cflags are not set
Some architectures set up CFLAGS for linux decompressor phase from
scratch and do not include GCC_PLUGINS_CFLAGS. Since "latent_entropy"
variable declaration is generated by the plugin code itself including
linux/random.h in decompressor code then would cause a build
error. E.g. on s390:

In file included from ./include/linux/net.h:22,
                 from ./include/linux/skbuff.h:29,
                 from ./include/linux/if_ether.h:23,
                 from ./arch/s390/include/asm/diag.h:12,
                 from arch/s390/boot/startup.c:8:
./include/linux/random.h: In function 'add_latent_entropy':
./include/linux/random.h:26:39: error: 'latent_entropy' undeclared
(first use in this function); did you mean 'add_latent_entropy'?
   26 |  add_device_randomness((const void *)&latent_entropy,
      |                                       ^~~~~~~~~~~~~~
      |                                       add_latent_entropy
./include/linux/random.h:26:39: note: each undeclared identifier is
reported only once for each function it appears in

The build error is triggered by commit a80313ff91 ("s390/kernel:
introduce .dma sections") which made it into 5.2 merge window.

To address that avoid using CONFIG_GCC_PLUGIN_LATENT_ENTROPY in
favour of LATENT_ENTROPY_PLUGIN definition which is defined as a
part of gcc plugins cflags and hence reflect more accurately when gcc
plugin is active. Besides that it is also used for similar purpose in
linux/compiler-gcc.h for latent_entropy attribute definition.

Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2019-05-08 08:15:52 +02:00
Kees Cook
d55535232c random: move rand_initialize() earlier
Right now rand_initialize() is run as an early_initcall(), but it only
depends on timekeeping_init() (for mixing ktime_get_real() into the
pools). However, the call to boot_init_stack_canary() for stack canary
initialization runs earlier, which triggers a warning at boot:

random: get_random_bytes called from start_kernel+0x357/0x548 with crng_init=0

Instead, this moves rand_initialize() to after timekeeping_init(), and moves
canary initialization here as well.

Note that this warning may still remain for machines that do not have
UEFI RNG support (which initializes the RNG pools during setup_arch()),
or for x86 machines without RDRAND (or booting without "random.trust=on"
or CONFIG_RANDOM_TRUST_CPU=y).

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-19 23:27:05 -04:00
Jason A. Donenfeld
9a47249d44 random: Make crng state queryable
It is very useful to be able to know whether or not get_random_bytes_wait
/ wait_for_random_bytes is going to block or not, or whether plain
get_random_bytes is going to return good randomness or bad randomness.

The particular use case is for mitigating certain attacks in WireGuard.
A handshake packet arrives and is queued up. Elsewhere a worker thread
takes items from the queue and processes them. In replying to these
items, it needs to use some random data, and it has to be good random
data. If we simply block until we can have good randomness, then it's
possible for an attacker to fill the queue up with packets waiting to be
processed. Upon realizing the queue is full, WireGuard will detect that
it's under a denial of service attack, and behave accordingly. A better
approach is just to drop incoming handshake packets if the crng is not
yet initialized.

This patch, therefore, makes that information directly accessible.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-08-02 17:33:06 -04:00
Tobin C. Harding
753d433b58 random: Return nbytes filled from hw RNG
Currently the function get_random_bytes_arch() has return value 'void'.
If the hw RNG fails we currently fall back to using get_random_bytes().
This defeats the purpose of requesting random material from the hw RNG
in the first place.

There are currently no intree users of get_random_bytes_arch().

Only get random bytes from the hw RNG, make function return the number
of bytes retrieved from the hw RNG.

Acked-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Tobin C. Harding <me@tobin.cc>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-07-17 21:32:48 -04:00
Jason A. Donenfeld
25e3fca492 random: always fill buffer in get_random_bytes_wait
In the unfortunate event that a developer fails to check the return
value of get_random_bytes_wait, or simply wants to make a "best effort"
attempt, for whatever that's worth, it's much better to still fill the
buffer with _something_ rather than catastrophically failing in the case
of an interruption. This is both a defense in depth measure against
inevitable programming bugs, as well as a means of making the API a bit
more useful.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-02-28 17:59:21 -05:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Linus Torvalds
52f6c588c7 Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull random updates from Ted Ts'o:
 "Add wait_for_random_bytes() and get_random_*_wait() functions so that
  callers can more safely get random bytes if they can block until the
  CRNG is initialized.

  Also print a warning if get_random_*() is called before the CRNG is
  initialized. By default, only one single-line warning will be printed
  per boot. If CONFIG_WARN_ALL_UNSEEDED_RANDOM is defined, then a
  warning will be printed for each function which tries to get random
  bytes before the CRNG is initialized. This can get spammy for certain
  architecture types, so it is not enabled by default"

* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
  random: reorder READ_ONCE() in get_random_uXX
  random: suppress spammy warnings about unseeded randomness
  random: warn when kernel uses unseeded randomness
  net/route: use get_random_int for random counter
  net/neighbor: use get_random_u32 for 32-bit hash random
  rhashtable: use get_random_u32 for hash_rnd
  ceph: ensure RNG is seeded before using
  iscsi: ensure RNG is seeded before use
  cifs: use get_random_u32 for 32-bit lock random
  random: add get_random_{bytes,u32,u64,int,long,once}_wait family
  random: add wait_for_random_bytes() API
2017-07-15 12:44:02 -07:00
Rik van Riel
022c204040 random,stackprotect: introduce get_random_canary function
Patch series "stackprotector: ascii armor the stack canary", v2.

Zero out the first byte of the stack canary value on 64 bit systems, in
order to mitigate unterminated C string overflows.

The null byte both prevents C string functions from reading the canary,
and from writing it if the canary value were guessed or obtained through
some other means.

Reducing the entropy by 8 bits is acceptable on 64-bit systems, which
will still have 56 bits of entropy left, but not on 32 bit systems, so
the "ascii armor" canary is only implemented on 64-bit systems.

Inspired by the "ascii armor" code in execshield and Daniel Micay's
linux-hardened tree.

Also see https://github.com/thestinger/linux-hardened/

This patch (of 5):

Introduce get_random_canary(), which provides a random unsigned long
canary value with the first byte zeroed out on 64 bit architectures, in
order to mitigate non-terminated C string overflows.

The null byte both prevents C string functions from reading the canary,
and from writing it if the canary value were guessed or obtained through
some other means.

Reducing the entropy by 8 bits is acceptable on 64-bit systems, which
will still have 56 bits of entropy left, but not on 32 bit systems, so
the "ascii armor" canary is only implemented on 64-bit systems.

Inspired by the "ascii armor" code in the old execshield patches, and
Daniel Micay's linux-hardened tree.

Link: http://lkml.kernel.org/r/20170524155751.424-2-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Jason A. Donenfeld
da9ba564bd random: add get_random_{bytes,u32,u64,int,long,once}_wait family
These functions are simple convenience wrappers that call
wait_for_random_bytes before calling the respective get_random_*
function.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-06-19 22:06:28 -04:00
Jason A. Donenfeld
e297a783e4 random: add wait_for_random_bytes() API
This enables users of get_random_{bytes,u32,u64,int,long} to wait until
the pool is ready before using this function, in case they actually want
to have reliable randomness.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-06-19 22:06:28 -04:00
Jason A. Donenfeld
c440408cf6 random: convert get_random_int/long into get_random_u32/u64
Many times, when a user wants a random number, he wants a random number
of a guaranteed size. So, thinking of get_random_int and get_random_long
in terms of get_random_u32 and get_random_u64 makes it much easier to
achieve this. It also makes the code simpler.

On 32-bit platforms, get_random_int and get_random_long are both aliased
to get_random_u32. On 64-bit platforms, int->u32 and long->u64.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-01-27 14:25:06 -05:00
Jason A. Donenfeld
f5b98461cb random: use chacha20 for get_random_int/long
Now that our crng uses chacha20, we can rely on its speedy
characteristics for replacing MD5, while simultaneously achieving a
higher security guarantee. Before the idea was to use these functions if
you wanted random integers that aren't stupidly insecure but aren't
necessarily secure either, a vague gray zone, that hopefully was "good
enough" for its users. With chacha20, we can strengthen this claim,
since either we're using an rdrand-like instruction, or we're using the
same crng as /dev/urandom. And it's faster than what was before.

We could have chosen to replace this with a SipHash-derived function,
which might be slightly faster, but at the cost of having yet another
RNG construction in the kernel. By moving to chacha20, we have a single
RNG to analyze and verify, and we also already get good performance
improvements on all platforms.

Implementation-wise, rather than use a generic buffer for both
get_random_int/long and memcpy based on the size needs, we use a
specific buffer for 32-bit reads and for 64-bit reads. This way, we're
guaranteed to always have aligned accesses on all platforms. While
slightly more verbose in C, the assembly this generates is a lot
simpler than otherwise.

Finally, on 32-bit platforms where longs and ints are the same size,
we simply alias get_random_int to get_random_long.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Suggested-by: Theodore Ts'o <tytso@mit.edu>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-01-27 14:25:06 -05:00
Linus Torvalds
9ffc66941d Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
 "This adds a new gcc plugin named "latent_entropy". It is designed to
  extract as much possible uncertainty from a running system at boot
  time as possible, hoping to capitalize on any possible variation in
  CPU operation (due to runtime data differences, hardware differences,
  SMP ordering, thermal timing variation, cache behavior, etc).

  At the very least, this plugin is a much more comprehensive example
  for how to manipulate kernel code using the gcc plugin internals"

* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  latent_entropy: Mark functions with __latent_entropy
  gcc-plugins: Add latent_entropy plugin
2016-10-15 10:03:15 -07:00
Jason Cooper
7425154d3b random: remove unused randomize_range()
All call sites for randomize_range have been updated to use the much
simpler and more robust randomize_addr().  Remove the now unnecessary
code.

Link: http://lkml.kernel.org/r/20160803233913.32511-8-jason@lakedaemon.net
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00
Jason Cooper
99fdafdeac random: simplify API for random address requests
To date, all callers of randomize_range() have set the length to 0, and
check for a zero return value.  For the current callers, the only way to
get zero returned is if end <= start.  Since they are all adding a
constant to the start address, this is unnecessary.

We can remove a bunch of needless checks by simplifying the API to do just
what everyone wants, return an address between [start, start + range).

While we're here, s/get_random_int/get_random_long/.  No current call site
is adversely affected by get_random_int(), since all current range
requests are < UINT_MAX.  However, we should match caller expectations to
avoid coming up short (ha!) in the future.

All current callers to randomize_range() chose to use the start address if
randomize_range() failed.  Therefore, we simplify things by just returning
the start address on error.

randomize_range() will be removed once all callers have been converted
over to randomize_addr().

Link: http://lkml.kernel.org/r/20160803233913.32511-2-jason@lakedaemon.net
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Roberts, William C" <william.c.roberts@intel.com>
Cc: Yann Droneaud <ydroneaud@opteya.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Jeffrey Vander Stoep <jeffv@google.com>
Cc: Daniel Cashman <dcashman@android.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11 15:06:32 -07:00