Merge Energy Model and power capping updates for 5.16-rc1:
- Add support for inefficient operating performance points to the
Energy Model and modify cpufreq to use them properly (Vincent
Donnefort).
- Rearrange the DTPM framework code to simplify it and make it easier
to follow (Daniel Lezcano).
- Fix power intialization in DTPM (Daniel Lezcano).
- Add CPU load consideration when estimating the instaneous power
consumption in DTPM (Daniel Lezcano).
* pm-em:
cpufreq: mediatek-hw: Fix cpufreq_table_find_index_dl() call
PM: EM: Mark inefficiencies in CPUFreq
cpufreq: Use CPUFREQ_RELATION_E in DVFS governors
cpufreq: Introducing CPUFREQ_RELATION_E
cpufreq: Add an interface to mark inefficient frequencies
cpufreq: Make policy min/max hard requirements
PM: EM: Allow skipping inefficient states
PM: EM: Extend em_perf_domain with a flag field
PM: EM: Mark inefficient states
PM: EM: Fix inefficient states detection
* powercap:
powercap/drivers/dtpm: Fix power limit initialization
powercap/drivers/dtpm: Scale the power with the load
powercap/drivers/dtpm: Use container_of instead of a private data field
powercap/drivers/dtpm: Simplify the dtpm table
powercap/drivers/dtpm: Encapsulate even more the code
Pull ARM cpufreq updates for 5.16-rc1 from Viresh Kumar:
"- Fix tegra driver to handle BPMP errors properly (Mikko Perttunen).
- Fix the parameter usage of the newly added perf-domain API (Hector
Yuan).
- Minor cleanups to cppc, vexpress and s3c244x drivers (Han Wang,
Guenter Roeck, and Arnd Bergmann)."
* 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm:
cpufreq: Fix parameter in parse_perf_domain()
cpufreq: tegra186/tegra194: Handle errors in BPMP response
cpufreq: remove useless INIT_LIST_HEAD()
cpufreq: s3c244x: add fallthrough comments for switch
cpufreq: vexpress: Drop unused variable
This newly introduced flag can be applied by a governor to a CPUFreq
relation, when looking for a frequency within the policy table. The
resolution would then only walk through efficient frequencies.
Even with the flag set, the policy max limit will still be honoured. If no
efficient frequencies can be found within the limits of the policy, an
inefficient one would be returned.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some SoCs such as the sd855 have OPPs within the same policy whose cost is
higher than others with a higher frequency. Those OPPs are inefficients
and it might be interesting for a governor to not use them.
cpufreq_table_set_inefficient() allows the caller to identify a specified
frequency as being inefficient. Inefficient frequencies are only supported
on sorted tables.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull more ARM cpufreq changes for v5.15-rc1 from Viresh Kumar:
"This adds a new cpufreq driver for Mediatek, which had been going
through reviews since last one year."
* 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm:
cpufreq: mediatek-hw: Add support for CPUFREQ HW
cpufreq: Add of_perf_domain_get_sharing_cpumask
dt-bindings: cpufreq: add bindings for MediaTek cpufreq HW
Add of_perf_domain_get_sharing_cpumask function to group cpu
to specific performance domain.
Signed-off-by: Hector.Yuan <hector.yuan@mediatek.com>
[ Viresh: create separate routine parse_perf_domain() and always set the
cpumask. ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Many cpufreq drivers register with the energy model for each policy and
do exactly the same thing. Follow the footsteps of thermal-cooling, to
get it done from the cpufreq core itself.
Provide a new callback, which will be called, if present, by the cpufreq
core at the right moment (more on that in the code's comment). Also
provide a generic implementation that uses dev_pm_opp_of_register_em().
This also allows us to register with the EM at a later point of time,
compared to ->init(), from where the EM core can access cpufreq policy
directly using cpufreq_cpu_get() type of helpers and perform other work,
like marking few frequencies inefficient, this will be done separately.
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Commit e3c0623608 ("cpufreq: add cpufreq_driver_resolve_freq()")
introduced this callback, back in 2016, for drivers that provide the
->target() callback.
The kernel hasn't seen a single user of it in the past 5 years and
it is not likely to be used any time soon.
Remove it for now.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that all users of ->stop_cpu() have been migrated to using other
callbacks, drop it from the core.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Minor edits in the subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This flag is set by one of the drivers but it isn't used in the code
otherwise. Remove the unused flag and update the driver.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During cpufreq driver's registration, if the ->init() callback for all
the CPUs fail then there is not much point in keeping the driver around
as it will only account for more of unnecessary noise, for example
cpufreq core will try to suspend/resume the driver which never got
registered properly.
The removal of such a driver is avoided if the driver carries the
CPUFREQ_STICKY flag. This was added way back [1] in 2004 and perhaps no
one should ever need it now. A lot of drivers do set this flag, probably
because they just copied it from other drivers.
This was added earlier for some platforms [2] because their cpufreq
drivers were getting registered before the CPUs were registered with
subsys framework. And hence they used to fail.
The same isn't true anymore though. The current code flow in the kernel
is:
start_kernel()
-> kernel_init()
-> kernel_init_freeable()
-> do_basic_setup()
-> driver_init()
-> cpu_dev_init()
-> subsys_system_register() //For CPUs
-> do_initcalls()
-> cpufreq_register_driver()
Clearly, the CPUs will always get registered with subsys framework
before any cpufreq driver can get probed. Remove the flag and update the
relevant drivers.
Link: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/include/linux/cpufreq.h?id=7cc9f0d9a1ab04cedc60d64fd8dcf7df224a3b4d # [1]
Link: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/arch/arm/mach-sa1100/cpu-sa1100.c?id=f59d3bbe35f6268d729f51be82af8325d62f20f5 # [2]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
First off, some cpufreq drivers (eg. intel_pstate) can pass hints
beyond the current target frequency to the hardware and there are no
provisions for doing that in the cpufreq framework. In particular,
today the driver has to assume that it should not allow the frequency
to fall below the one requested by the governor (or the required
capacity may not be provided) which may not be the case and which may
lead to excessive energy usage in some scenarios.
Second, the hints passed by these drivers to the hardware need not be
in terms of the frequency, so representing the utilization numbers
coming from the scheduler as frequency before passing them to those
drivers is not really useful.
Address the two points above by adding a special-purpose replacement
for the ->fast_switch callback, called ->adjust_perf, allowing the
governor to pass abstract performance level (rather than frequency)
values for the minimum (required) and target (desired) performance
along with the CPU capacity to compare them to.
Also update the schedutil governor to use the new callback instead
of ->fast_switch if present and if the utilization mertics are
frequency-invariant (that is requisite for the direct mapping
between the utilization and the CPU performance levels to be a
reasonable approximation).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Add a new field to be set when the CPUFREQ_GOV_STRICT_TARGET flag is
set for the current governor to struct cpufreq_policy, so that the
drivers needing to check CPUFREQ_GOV_STRICT_TARGET do not have to
access the governor object during every frequency transition.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Introduce a new governor flag, CPUFREQ_GOV_STRICT_TARGET, for the
governors that want the target frequency to be set exactly to the
given value without leaving any room for adjustments on the hardware
side and set this flag for the powersave and performance governors.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
A new cpufreq governor flag will be added subsequently, so replace
the bool dynamic_switching fleid in struct cpufreq_governor with a
flags field and introduce CPUFREQ_GOV_DYNAMIC_SWITCHING to set for
the "dynamic switching" governors instead of it.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The restore_freq field in struct cpufreq_policy is only used by
__target_index() in one place and a local variable in that function
may as well be used instead of it, so drop it and modify
__target_index() accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Add a helper function to test the flags of the cpufreq driver in use
againt a given flags mask.
In particular, this will be needed to test the
CPUFREQ_NEED_UPDATE_LIMITS cpufreq driver flag in the schedutil
governor.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Generally, a cpufreq driver may need to update some internal upper
and lower frequency boundaries on policy max and min changes,
respectively, but currently this does not work if the target
frequency does not change along with the policy limit.
Namely, if the target frequency does not change along with the
policy min or max, the "target_freq == policy->cur" check in
__cpufreq_driver_target() prevents driver callbacks from being
invoked and they do not even have a chance to update the
corresponding internal boundary.
This particularly affects the "powersave" and "performance"
governors that always set the target frequency to one of the
policy limits and it never changes when the other limit is updated.
To allow cpufreq the drivers needing to update internal frequency
boundaries on policy limits changes to avoid this issue, introduce
a new driver flag, CPUFREQ_NEED_UPDATE_LIMITS, that (when set) will
neutralize the check mentioned above.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Compared to other arch_* functions, arch_set_freq_scale() has an atypical
weak definition that can be replaced by a strong architecture specific
implementation.
The more typical support for architectural functions involves defining
an empty stub in a header file if the symbol is not already defined in
architecture code. Some examples involve:
- #define arch_scale_freq_capacity topology_get_freq_scale
- #define arch_scale_freq_invariant topology_scale_freq_invariant
- #define arch_scale_cpu_capacity topology_get_cpu_scale
- #define arch_update_cpu_topology topology_update_cpu_topology
- #define arch_scale_thermal_pressure topology_get_thermal_pressure
- #define arch_set_thermal_pressure topology_set_thermal_pressure
Bring arch_set_freq_scale() in line with these functions by renaming it to
topology_set_freq_scale() in the arch topology driver, and by defining the
arch_set_freq_scale symbol to point to the new function for arm and arm64.
While there are other users of the arch_topology driver, this patch defines
arch_set_freq_scale for arm and arm64 only, due to their existing
definitions of arch_scale_freq_capacity. This is the getter function of the
frequency invariance scale factor and without a getter function, the
setter function - arch_set_freq_scale() has not purpose.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com> (BL_SWITCHER and topology parts)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The passed cpumask arguments to arch_set_freq_scale() and
arch_freq_counters_available() are only iterated over, so reflect this
in the prototype. This also allows to pass system cpumasks like
cpu_online_mask without getting a warning.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>