Merge misc updates from Andrew Morton:
"257 patches.
Subsystems affected by this patch series: scripts, ocfs2, vfs, and
mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
cleanups, kfence, and damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
mm/damon: remove return value from before_terminate callback
mm/damon: fix a few spelling mistakes in comments and a pr_debug message
mm/damon: simplify stop mechanism
Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
Docs/admin-guide/mm/damon/start: simplify the content
Docs/admin-guide/mm/damon/start: fix a wrong link
Docs/admin-guide/mm/damon/start: fix wrong example commands
mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
mm/damon: remove unnecessary variable initialization
Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
selftests/damon: support watermarks
mm/damon/dbgfs: support watermarks
mm/damon/schemes: activate schemes based on a watermarks mechanism
tools/selftests/damon: update for regions prioritization of schemes
mm/damon/dbgfs: support prioritization weights
mm/damon/vaddr,paddr: support pageout prioritization
mm/damon/schemes: prioritize regions within the quotas
mm/damon/selftests: support schemes quotas
mm/damon/dbgfs: support quotas of schemes
...
GCC and Clang can use the "alloc_size" attribute to better inform the
results of __builtin_object_size() (for compile-time constant values).
Clang can additionally use alloc_size to inform the results of
__builtin_dynamic_object_size() (for run-time values).
Because GCC sees the frequent use of struct_size() as an allocator size
argument, and notices it can return SIZE_MAX (the overflow indication),
it complains about these call sites overflowing (since SIZE_MAX is
greater than the default -Walloc-size-larger-than=PTRDIFF_MAX). This
isn't helpful since we already know a SIZE_MAX will be caught at
run-time (this was an intentional design). To deal with this, we must
disable this check as it is both a false positive and redundant. (Clang
does not have this warning option.)
Unfortunately, just checking the -Wno-alloc-size-larger-than is not
sufficient to make the __alloc_size attribute behave correctly under
older GCC versions. The attribute itself must be disabled in those
situations too, as there appears to be no way to reliably silence the
SIZE_MAX constant expression cases for GCC versions less than 9.1:
In file included from ./include/linux/resource_ext.h:11,
from ./include/linux/pci.h:40,
from drivers/net/ethernet/intel/ixgbe/ixgbe.h:9,
from drivers/net/ethernet/intel/ixgbe/ixgbe_lib.c:4:
In function 'kmalloc_node',
inlined from 'ixgbe_alloc_q_vector' at ./include/linux/slab.h:743:9:
./include/linux/slab.h:618:9: error: argument 1 value '18446744073709551615' exceeds maximum object size 9223372036854775807 [-Werror=alloc-size-larger-than=]
return __kmalloc_node(size, flags, node);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
./include/linux/slab.h: In function 'ixgbe_alloc_q_vector':
./include/linux/slab.h:455:7: note: in a call to allocation function '__kmalloc_node' declared here
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_slab_alignment __malloc;
^~~~~~~~~~~~~~
Specifically:
'-Wno-alloc-size-larger-than' is not correctly handled by GCC < 9.1
https://godbolt.org/z/hqsfG7q84 (doesn't disable)
https://godbolt.org/z/P9jdrPTYh (doesn't admit to not knowing about option)
https://godbolt.org/z/465TPMWKb (only warns when other warnings appear)
'-Walloc-size-larger-than=18446744073709551615' is not handled by GCC < 8.2
https://godbolt.org/z/73hh1EPxz (ignores numeric value)
Since anything marked with __alloc_size would also qualify for marking
with __malloc, just include __malloc along with it to avoid redundant
markings. (Suggested by Linus Torvalds.)
Finally, make sure checkpatch.pl doesn't get confused about finding the
__alloc_size attribute on functions. (Thanks to Joe Perches.)
Link: https://lkml.kernel.org/r/20210930222704.2631604-3-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dwaipayan Ray <dwaipayanray1@gmail.com>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When Clang is using the hwaddress sanitizer, it sets __SANITIZE_ADDRESS__
explicitly:
#if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
/* Emulate GCC's __SANITIZE_ADDRESS__ flag */
#define __SANITIZE_ADDRESS__
#endif
Once hwaddress sanitizer was added to GCC, however, a separate define
was created, __SANITIZE_HWADDRESS__. The kernel is expecting to find
__SANITIZE_ADDRESS__ in either case, though, and the existing string
macros break on supported architectures:
#if (defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)) && \
!defined(__SANITIZE_ADDRESS__)
where as other architectures (like arm32) have no idea about hwaddress
sanitizer and just check for __SANITIZE_ADDRESS__:
#if defined(CONFIG_KASAN) && !defined(__SANITIZE_ADDRESS__)
This would lead to compiler foritfy self-test warnings when building
with CONFIG_KASAN_SW_TAGS=y:
warning: unsafe memmove() usage lacked '__read_overflow2' symbol in lib/test_fortify/read_overflow2-memmove.c
warning: unsafe memcpy() usage lacked '__write_overflow' symbol in lib/test_fortify/write_overflow-memcpy.c
...
Sort this out by also defining __SANITIZE_ADDRESS__ in GCC under the
hwaddress sanitizer.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Will Deacon <will@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: llvm@lists.linux.dev
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Reviewed-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20211020200039.170424-1-keescook@chromium.org
Merge patch series from Nick Desaulniers to update the minimum gcc
version to 5.1.
This is some of the left-overs from the merge window that I didn't want
to deal with yesterday, so it comes in after -rc1 but was sent before.
Gcc-4.9 support has been an annoyance for some time, and with -Werror I
had the choice of applying a fairly big patch from Kees Cook to remove a
fair number of initializer warnings (still leaving some), or this patch
series from Nick that just removes the source of the problem.
The initializer cleanups might still be worth it regardless, but
honestly, I preferred just tackling the problem with gcc-4.9 head-on.
We've been more aggressiuve about no longer having to care about
compilers that were released a long time ago, and I think it's been a
good thing.
I added a couple of patches on top to sort out a few left-overs now that
we no longer support gcc-4.x.
As noted by Arnd, as a result of this minimum compiler version upgrade
we can probably change our use of '--std=gnu89' to '--std=gnu11', and
finally start using local loop declarations etc. But this series does
_not_ yet do that.
Link: https://lore.kernel.org/all/20210909182525.372ee687@canb.auug.org.au/
Link: https://lore.kernel.org/lkml/CAK7LNASs6dvU6D3jL2GG3jW58fXfaj6VNOe55NJnTB8UPuk2pA@mail.gmail.com/
Link: https://github.com/ClangBuiltLinux/linux/issues/1438
* emailed patches from Nick Desaulniers <ndesaulniers@google.com>:
Drop some straggling mentions of gcc-4.9 as being stale
compiler_attributes.h: drop __has_attribute() support for gcc4
vmlinux.lds.h: remove old check for GCC 4.9
compiler-gcc.h: drop checks for older GCC versions
Makefile: drop GCC < 5 -fno-var-tracking-assignments workaround
arm64: remove GCC version check for ARCH_SUPPORTS_INT128
powerpc: remove GCC version check for UPD_CONSTR
riscv: remove Kconfig check for GCC version for ARCH_RV64I
Kconfig.debug: drop GCC 5+ version check for DWARF5
mm/ksm: remove old GCC 4.9+ check
compiler.h: drop fallback overflow checkers
Documentation: raise minimum supported version of GCC to 5.1
Pull compiler attributes updates from Miguel Ojeda:
- Fix __has_attribute(__no_sanitize_coverage__) for GCC 4 (Marco Elver)
- Add Nick as Reviewer for compiler_attributes.h (Nick Desaulniers)
- Move __compiletime_{error|warning} (Nick Desaulniers)
* tag 'compiler-attributes-for-linus-v5.15-rc1-v2' of git://github.com/ojeda/linux:
compiler_attributes.h: move __compiletime_{error|warning}
MAINTAINERS: add Nick as Reviewer for compiler_attributes.h
Compiler Attributes: fix __has_attribute(__no_sanitize_coverage__) for GCC 4
Paul Gortmaker reported a regression in the GCC version check. [1]
If you use GCC 4.8, the build breaks before showing the error message
"error Sorry, your version of GCC is too old - please use 4.9 or newer."
I do not want to apply his fix-up since it implies we would not be able
to remove any cc-option test. Anyway, I admit checking the GCC version
in <linux/compiler-gcc.h> is too late.
Almost at the same time, Linus also suggested to move the compiler
version error to Kconfig time. [2]
I unified the two similar scripts, gcc-version.sh and clang-version.sh
into cc-version.sh. The old scripts invoked the compiler multiple times
(3 times for gcc-version.sh, 4 times for clang-version.sh). I refactored
the code so the new one invokes the compiler just once, and also tried
my best to use shell-builtin commands where possible.
The new script runs faster.
$ time ./scripts/clang-version.sh clang
120000
real 0m0.029s
user 0m0.012s
sys 0m0.021s
$ time ./scripts/cc-version.sh clang
Clang 120000
real 0m0.009s
user 0m0.006s
sys 0m0.004s
cc-version.sh also shows an error message if the compiler is too old:
$ make defconfig CC=clang-9
*** Default configuration is based on 'x86_64_defconfig'
***
*** Compiler is too old.
*** Your Clang version: 9.0.1
*** Minimum Clang version: 10.0.1
***
scripts/Kconfig.include:46: Sorry, this compiler is not supported.
make[1]: *** [scripts/kconfig/Makefile:81: defconfig] Error 1
make: *** [Makefile:602: defconfig] Error 2
The new script takes care of ICC because we have <linux/compiler-intel.h>
although I am not sure if building the kernel with ICC is well-supported.
[1]: https://lore.kernel.org/r/20210110190807.134996-1-paul.gortmaker@windriver.com
[2]: https://lore.kernel.org/r/CAHk-=wh-+TMHPTFo1qs-MYyK7tZh-OQovA=pP3=e06aCVp6_kA@mail.gmail.com
Fixes: 87de84c914 ("kbuild: remove cc-option test of -Werror=date-time")
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Tested-by: Miguel Ojeda <ojeda@kernel.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Commit 815f0ddb34 ("include/linux/compiler*.h: make compiler-*.h
mutually exclusive") neglected to copy barrier_data() from
compiler-gcc.h into compiler-clang.h.
The definition in compiler-gcc.h was really to work around clang's more
aggressive optimization, so this broke barrier_data() on clang, and
consequently memzero_explicit() as well.
For example, this results in at least the memzero_explicit() call in
lib/crypto/sha256.c:sha256_transform() being optimized away by clang.
Fix this by moving the definition of barrier_data() into compiler.h.
Also move the gcc/clang definition of barrier() into compiler.h,
__memory_barrier() is icc-specific (and barrier() is already defined
using it in compiler-intel.h) and doesn't belong in compiler.h.
[rdunlap@infradead.org: fix ALPHA builds when SMP is not enabled]
Link: https://lkml.kernel.org/r/20201101231835.4589-1-rdunlap@infradead.org
Fixes: 815f0ddb34 ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201014212631.207844-1-nivedita@alum.mit.edu
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3193c0836 ("bpf: Disable GCC -fgcse optimization for
___bpf_prog_run()") introduced a __no_fgcse macro that expands to a
function scope __attribute__((optimize("-fno-gcse"))), to disable a
GCC specific optimization that was causing trouble on x86 builds, and
was not expected to have any positive effect in the first place.
However, as the GCC manual documents, __attribute__((optimize))
is not for production use, and results in all other optimization
options to be forgotten for the function in question. This can
cause all kinds of trouble, but in one particular reported case,
it causes -fno-asynchronous-unwind-tables to be disregarded,
resulting in .eh_frame info to be emitted for the function.
This reverts commit 3193c0836, and instead, it disables the -fgcse
optimization for the entire source file, but only when building for
X86 using GCC with CONFIG_BPF_JIT_ALWAYS_ON disabled. Note that the
original commit states that CONFIG_RETPOLINE=n triggers the issue,
whereas CONFIG_RETPOLINE=y performs better without the optimization,
so it is kept disabled in both cases.
Fixes: 3193c0836f ("bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/lkml/CAMuHMdUg0WJHEcq6to0-eODpXPOywLot6UD2=GFHpzoj_hCoBQ@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20201028171506.15682-2-ardb@kernel.org
I realize that we fairly recently raised it to 4.8, but the fact is, 4.9
is a much better minimum version to target.
We have a number of workarounds for actual bugs in pre-4.9 gcc versions
(including things like internal compiler errors on ARM), but we also
have some syntactic workarounds for lacking features.
In particular, raising the minimum to 4.9 means that we can now just
assume _Generic() exists, which is likely the much better replacement
for a lot of very convoluted built-time magic with conditionals on
sizeof and/or __builtin_choose_expr() with same_type() etc.
Using _Generic also means that you will need to have a very recent
version of 'sparse', but thats easy to build yourself, and much less of
a hassle than some old gcc version can be.
The latest (in a long string) of reasons for minimum compiler version
upgrades was commit 5435f73d5c ("efi/x86: Fix build with gcc 4").
Ard points out that RHEL 7 uses gcc-4.8, but the people who stay back on
old RHEL versions persumably also don't build their own kernels anyway.
And maybe they should cross-built or just have a little side affair with
a newer compiler?
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It is very rare to see versions of GCC prior to 4.8 being used to build
the mainline kernel. These old compilers are also know to have codegen
issues which can lead to silent miscompilation:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145
Raise the minimum GCC version for kernel build to 4.8 and remove some
tautological Kconfig dependencies as a consequence.
Cc: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Since the use of -fsanitize=thread is an implementation detail of KCSAN,
the name __no_sanitize_thread could be misleading if used widely.
Instead, we introduce the __no_kcsan attribute which is shorter and more
accurate in the context of KCSAN.
This matches the attribute name __no_kcsan_or_inline. The use of
__kcsan_or_inline itself is still required for __always_inline functions
to retain compatibility with older compilers.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for
kernel space. KCSAN is a sampling watchpoint-based data-race detector.
See the included Documentation/dev-tools/kcsan.rst for more details.
This patch adds basic infrastructure, but does not yet enable KCSAN for
any architecture.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
On x86-64, with CONFIG_RETPOLINE=n, GCC's "global common subexpression
elimination" optimization results in ___bpf_prog_run()'s jumptable code
changing from this:
select_insn:
jmp *jumptable(, %rax, 8)
...
ALU64_ADD_X:
...
jmp *jumptable(, %rax, 8)
ALU_ADD_X:
...
jmp *jumptable(, %rax, 8)
to this:
select_insn:
mov jumptable, %r12
jmp *(%r12, %rax, 8)
...
ALU64_ADD_X:
...
jmp *(%r12, %rax, 8)
ALU_ADD_X:
...
jmp *(%r12, %rax, 8)
The jumptable address is placed in a register once, at the beginning of
the function. The function execution can then go through multiple
indirect jumps which rely on that same register value. This has a few
issues:
1) Objtool isn't smart enough to be able to track such a register value
across multiple recursive indirect jumps through the jump table.
2) With CONFIG_RETPOLINE enabled, this optimization actually results in
a small slowdown. I measured a ~4.7% slowdown in the test_bpf
"tcpdump port 22" selftest.
This slowdown is actually predicted by the GCC manual:
Note: When compiling a program using computed gotos, a GCC
extension, you may get better run-time performance if you
disable the global common subexpression elimination pass by
adding -fno-gcse to the command line.
So just disable the optimization for this function.
Fixes: e55a73251d ("bpf: Fix ORC unwinding in non-JIT BPF code")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/30c3ca29ba037afcbd860a8672eef0021addf9fe.1563413318.git.jpoimboe@redhat.com