Commit Graph

286 Commits

Author SHA1 Message Date
Stephen Rothwell
10d48705d5 fix up for "net: add new socket option SO_RESERVE_MEM"
Some architectures do not include uapi/asm/socket.h

Fixes: 2bb2f5fb21 ("net: add new socket option SO_RESERVE_MEM")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-01 15:00:21 +01:00
Linus Torvalds
48983701a1 Merge branch 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo si_trapno updates from Eric Biederman:
 "The full set of si_trapno changes was not appropriate as a fix for the
  newly added SIGTRAP TRAP_PERF, and so I postponed the rest of the
  related cleanups.

  This is the rest of the cleanups for si_trapno that reduces it from
  being a really weird arch special case that is expect to be always
  present (but isn't) on the architectures that support it to being yet
  another field in the _sigfault union of struct siginfo.

  The changes have been reviewed and marinated in linux-next. With the
  removal of this awkward special case new code (like SIGTRAP TRAP_PERF)
  that works across architectures should be easier to write and
  maintain"

* 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  signal: Rename SIL_PERF_EVENT SIL_FAULT_PERF_EVENT for consistency
  signal: Verify the alignment and size of siginfo_t
  signal: Remove the generic __ARCH_SI_TRAPNO support
  signal/alpha: si_trapno is only used with SIGFPE and SIGTRAP TRAP_UNK
  signal/sparc: si_trapno is only used with SIGILL ILL_ILLTRP
  arm64: Add compile-time asserts for siginfo_t offsets
  arm: Add compile-time asserts for siginfo_t offsets
  sparc64: Add compile-time asserts for siginfo_t offsets
2021-09-01 14:42:36 -07:00
Pavel Tikhomirov
04190bf894 sock: allow reading and changing sk_userlocks with setsockopt
SOCK_SNDBUF_LOCK and SOCK_RCVBUF_LOCK flags disable automatic socket
buffers adjustment done by kernel (see tcp_fixup_rcvbuf() and
tcp_sndbuf_expand()). If we've just created a new socket this adjustment
is enabled on it, but if one changes the socket buffer size by
setsockopt(SO_{SND,RCV}BUF*) it becomes disabled.

CRIU needs to call setsockopt(SO_{SND,RCV}BUF*) on each socket on
restore as it first needs to increase buffer sizes for packet queues
restore and second it needs to restore back original buffer sizes. So
after CRIU restore all sockets become non-auto-adjustable, which can
decrease network performance of restored applications significantly.

CRIU need to be able to restore sockets with enabled/disabled adjustment
to the same state it was before dump, so let's add special setsockopt
for it.

Let's also export SOCK_SNDBUF_LOCK and SOCK_RCVBUF_LOCK flags to uAPI so
that using these interface one can reenable automatic socket buffer
adjustment on their sockets.

Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-04 12:52:03 +01:00
Eric W. Biederman
c7fff9288d signal: Remove the generic __ARCH_SI_TRAPNO support
Now that __ARCH_SI_TRAPNO is no longer set by any architecture remove
all of the code it enabled from the kernel.

On alpha and sparc a more explict approach of using
send_sig_fault_trapno or force_sig_fault_trapno in the very limited
circumstances where si_trapno was set to a non-zero value.

The generic support that is being removed always set si_trapno on all
fault signals.  With only SIGILL ILL_ILLTRAP on sparc and SIGFPE and
SIGTRAP TRAP_UNK on alpla providing si_trapno values asking all senders
of fault signals to provide an si_trapno value does not make sense.

Making si_trapno an ordinary extension of the fault siginfo layout has
enabled the architecture generic implementation of SIGTRAP TRAP_PERF,
and enables other faulting signals to grow architecture generic
senders as well.

v1: https://lkml.kernel.org/r/m18s4zs7nu.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-8-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/87bl73xx6x.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-07-23 13:14:13 -05:00
Linus Torvalds
71bd934101 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "190 patches.

  Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
  vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
  migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
  zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
  core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
  signals, exec, kcov, selftests, compress/decompress, and ipc"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  ipc/util.c: use binary search for max_idx
  ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
  ipc: use kmalloc for msg_queue and shmid_kernel
  ipc sem: use kvmalloc for sem_undo allocation
  lib/decompressors: remove set but not used variabled 'level'
  selftests/vm/pkeys: exercise x86 XSAVE init state
  selftests/vm/pkeys: refill shadow register after implicit kernel write
  selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
  selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
  kcov: add __no_sanitize_coverage to fix noinstr for all architectures
  exec: remove checks in __register_bimfmt()
  x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
  hfsplus: report create_date to kstat.btime
  hfsplus: remove unnecessary oom message
  nilfs2: remove redundant continue statement in a while-loop
  kprobes: remove duplicated strong free_insn_page in x86 and s390
  init: print out unknown kernel parameters
  checkpatch: do not complain about positive return values starting with EPOLL
  checkpatch: improve the indented label test
  checkpatch: scripts/spdxcheck.py now requires python3
  ...
2021-07-02 12:08:10 -07:00
David Hildenbrand
4ca9b3859d mm/madvise: introduce MADV_POPULATE_(READ|WRITE) to prefault page tables
I. Background: Sparse Memory Mappings

When we manage sparse memory mappings dynamically in user space - also
sometimes involving MAP_NORESERVE - we want to dynamically populate/
discard memory inside such a sparse memory region.  Example users are
hypervisors (especially implementing memory ballooning or similar
technologies like virtio-mem) and memory allocators.  In addition, we want
to fail in a nice way (instead of generating SIGBUS) if populating does
not succeed because we are out of backend memory (which can happen easily
with file-based mappings, especially tmpfs and hugetlbfs).

While MADV_DONTNEED, MADV_REMOVE and FALLOC_FL_PUNCH_HOLE allow for
reliably discarding memory for most mapping types, there is no generic
approach to populate page tables and preallocate memory.

Although mmap() supports MAP_POPULATE, it is not applicable to the concept
of sparse memory mappings, where we want to populate/discard dynamically
and avoid expensive/problematic remappings.  In addition, we never
actually report errors during the final populate phase - it is best-effort
only.

fallocate() can be used to preallocate file-based memory and fail in a
safe way.  However, it cannot really be used for any private mappings on
anonymous files via memfd due to COW semantics.  In addition, fallocate()
does not actually populate page tables, so we still always get pagefaults
on first access - which is sometimes undesired (i.e., real-time workloads)
and requires real prefaulting of page tables, not just a preallocation of
backend storage.  There might be interesting use cases for sparse memory
regions along with mlockall(MCL_ONFAULT) which fallocate() cannot satisfy
as it does not prefault page tables.

II. On preallcoation/prefaulting from user space

Because we don't have a proper interface, what applications (like QEMU and
databases) end up doing is touching (i.e., reading+writing one byte to not
overwrite existing data) all individual pages.

However, that approach
1) Can result in wear on storage backing, because we end up reading/writing
   each page; this is especially a problem for dax/pmem.
2) Can result in mmap_sem contention when prefaulting via multiple
   threads.
3) Requires expensive signal handling, especially to catch SIGBUS in case
   of hugetlbfs/shmem/file-backed memory. For example, this is
   problematic in hypervisors like QEMU where SIGBUS handlers might already
   be used by other subsystems concurrently to e.g, handle hardware errors.
   "Simply" doing preallocation concurrently from other thread is not that
   easy.

III. On MADV_WILLNEED

Extending MADV_WILLNEED is not an option because
1. It would change the semantics: "Expect access in the near future." and
   "might be a good idea to read some pages" vs. "Definitely populate/
   preallocate all memory and definitely fail on errors.".
2. Existing users (like virtio-balloon in QEMU when deflating the balloon)
   don't want populate/prealloc semantics. They treat this rather as a hint
   to give a little performance boost without too much overhead - and don't
   expect that a lot of memory might get consumed or a lot of time
   might be spent.

IV. MADV_POPULATE_READ and MADV_POPULATE_WRITE

Let's introduce MADV_POPULATE_READ and MADV_POPULATE_WRITE, inspired by
MAP_POPULATE, with the following semantics:
1. MADV_POPULATE_READ can be used to prefault page tables just like
   manually reading each individual page. This will not break any COW
   mappings. The shared zero page might get mapped and no backend storage
   might get preallocated -- allocation might be deferred to
   write-fault time. Especially shared file mappings require an explicit
   fallocate() upfront to actually preallocate backend memory (blocks in
   the file system) in case the file might have holes.
2. If MADV_POPULATE_READ succeeds, all page tables have been populated
   (prefaulted) readable once.
3. MADV_POPULATE_WRITE can be used to preallocate backend memory and
   prefault page tables just like manually writing (or
   reading+writing) each individual page. This will break any COW
   mappings -- e.g., the shared zeropage is never populated.
4. If MADV_POPULATE_WRITE succeeds, all page tables have been populated
   (prefaulted) writable once.
5. MADV_POPULATE_READ and MADV_POPULATE_WRITE cannot be applied to special
   mappings marked with VM_PFNMAP and VM_IO. Also, proper access
   permissions (e.g., PROT_READ, PROT_WRITE) are required. If any such
   mapping is encountered, madvise() fails with -EINVAL.
6. If MADV_POPULATE_READ or MADV_POPULATE_WRITE fails, some page tables
   might have been populated.
7. MADV_POPULATE_READ and MADV_POPULATE_WRITE will return -EHWPOISON
   when encountering a HW poisoned page in the range.
8. Similar to MAP_POPULATE, MADV_POPULATE_READ and MADV_POPULATE_WRITE
   cannot protect from the OOM (Out Of Memory) handler killing the
   process.

While the use case for MADV_POPULATE_WRITE is fairly obvious (i.e.,
preallocate memory and prefault page tables for VMs), one issue is that
whenever we prefault pages writable, the pages have to be marked dirty,
because the CPU could dirty them any time.  while not a real problem for
hugetlbfs or dax/pmem, it can be a problem for shared file mappings: each
page will be marked dirty and has to be written back later when evicting.

MADV_POPULATE_READ allows for optimizing this scenario: Pre-read a whole
mapping from backend storage without marking it dirty, such that eviction
won't have to write it back.  As discussed above, shared file mappings
might require an explciit fallocate() upfront to achieve
preallcoation+prepopulation.

Although sparse memory mappings are the primary use case, this will also
be useful for other preallocate/prefault use cases where MAP_POPULATE is
not desired or the semantics of MAP_POPULATE are not sufficient: as one
example, QEMU users can trigger preallocation/prefaulting of guest RAM
after the mapping was created -- and don't want errors to be silently
suppressed.

Looking at the history, MADV_POPULATE was already proposed in 2013 [1],
however, the main motivation back than was performance improvements --
which should also still be the case.

V. Single-threaded performance comparison

I did a short experiment, prefaulting page tables on completely *empty
mappings/files* and repeated the experiment 10 times.  The results
correspond to the shortest execution time.  In general, the performance
benefit for huge pages is negligible with small mappings.

V.1: Private mappings

POPULATE_READ and POPULATE_WRITE is fastest.  Note that
Reading/POPULATE_READ will populate the shared zeropage where applicable
-- which result in short population times.

The fastest way to allocate backend storage (here: swap or huge pages) and
prefault page tables is POPULATE_WRITE.

V.2: Shared mappings

fallocate() is fastest, however, doesn't prefault page tables.
POPULATE_WRITE is faster than simple writes and read/writes.
POPULATE_READ is faster than simple reads.

Without a fd, the fastest way to allocate backend storage and prefault
page tables is POPULATE_WRITE.  With an fd, the fastest way is usually
FALLOCATE+POPULATE_READ or FALLOCATE+POPULATE_WRITE respectively; one
exception are actual files: FALLOCATE+Read is slightly faster than
FALLOCATE+POPULATE_READ.

The fastest way to allocate backend storage prefault page tables is
FALLOCATE+POPULATE_WRITE -- except when dealing with actual files; then,
FALLOCATE+POPULATE_READ is fastest and won't directly mark all pages as
dirty.

v.3: Detailed results

==================================================
2 MiB MAP_PRIVATE:
**************************************************
Anon 4 KiB     : Read                     :     0.119 ms
Anon 4 KiB     : Write                    :     0.222 ms
Anon 4 KiB     : Read/Write               :     0.380 ms
Anon 4 KiB     : POPULATE_READ            :     0.060 ms
Anon 4 KiB     : POPULATE_WRITE           :     0.158 ms
Memfd 4 KiB    : Read                     :     0.034 ms
Memfd 4 KiB    : Write                    :     0.310 ms
Memfd 4 KiB    : Read/Write               :     0.362 ms
Memfd 4 KiB    : POPULATE_READ            :     0.039 ms
Memfd 4 KiB    : POPULATE_WRITE           :     0.229 ms
Memfd 2 MiB    : Read                     :     0.030 ms
Memfd 2 MiB    : Write                    :     0.030 ms
Memfd 2 MiB    : Read/Write               :     0.030 ms
Memfd 2 MiB    : POPULATE_READ            :     0.030 ms
Memfd 2 MiB    : POPULATE_WRITE           :     0.030 ms
tmpfs          : Read                     :     0.033 ms
tmpfs          : Write                    :     0.313 ms
tmpfs          : Read/Write               :     0.406 ms
tmpfs          : POPULATE_READ            :     0.039 ms
tmpfs          : POPULATE_WRITE           :     0.285 ms
file           : Read                     :     0.033 ms
file           : Write                    :     0.351 ms
file           : Read/Write               :     0.408 ms
file           : POPULATE_READ            :     0.039 ms
file           : POPULATE_WRITE           :     0.290 ms
hugetlbfs      : Read                     :     0.030 ms
hugetlbfs      : Write                    :     0.030 ms
hugetlbfs      : Read/Write               :     0.030 ms
hugetlbfs      : POPULATE_READ            :     0.030 ms
hugetlbfs      : POPULATE_WRITE           :     0.030 ms
**************************************************
4096 MiB MAP_PRIVATE:
**************************************************
Anon 4 KiB     : Read                     :   237.940 ms
Anon 4 KiB     : Write                    :   708.409 ms
Anon 4 KiB     : Read/Write               :  1054.041 ms
Anon 4 KiB     : POPULATE_READ            :   124.310 ms
Anon 4 KiB     : POPULATE_WRITE           :   572.582 ms
Memfd 4 KiB    : Read                     :   136.928 ms
Memfd 4 KiB    : Write                    :   963.898 ms
Memfd 4 KiB    : Read/Write               :  1106.561 ms
Memfd 4 KiB    : POPULATE_READ            :    78.450 ms
Memfd 4 KiB    : POPULATE_WRITE           :   805.881 ms
Memfd 2 MiB    : Read                     :   357.116 ms
Memfd 2 MiB    : Write                    :   357.210 ms
Memfd 2 MiB    : Read/Write               :   357.606 ms
Memfd 2 MiB    : POPULATE_READ            :   356.094 ms
Memfd 2 MiB    : POPULATE_WRITE           :   356.937 ms
tmpfs          : Read                     :   137.536 ms
tmpfs          : Write                    :   954.362 ms
tmpfs          : Read/Write               :  1105.954 ms
tmpfs          : POPULATE_READ            :    80.289 ms
tmpfs          : POPULATE_WRITE           :   822.826 ms
file           : Read                     :   137.874 ms
file           : Write                    :   987.025 ms
file           : Read/Write               :  1107.439 ms
file           : POPULATE_READ            :    80.413 ms
file           : POPULATE_WRITE           :   857.622 ms
hugetlbfs      : Read                     :   355.607 ms
hugetlbfs      : Write                    :   355.729 ms
hugetlbfs      : Read/Write               :   356.127 ms
hugetlbfs      : POPULATE_READ            :   354.585 ms
hugetlbfs      : POPULATE_WRITE           :   355.138 ms
**************************************************
2 MiB MAP_SHARED:
**************************************************
Anon 4 KiB     : Read                     :     0.394 ms
Anon 4 KiB     : Write                    :     0.348 ms
Anon 4 KiB     : Read/Write               :     0.400 ms
Anon 4 KiB     : POPULATE_READ            :     0.326 ms
Anon 4 KiB     : POPULATE_WRITE           :     0.273 ms
Anon 2 MiB     : Read                     :     0.030 ms
Anon 2 MiB     : Write                    :     0.030 ms
Anon 2 MiB     : Read/Write               :     0.030 ms
Anon 2 MiB     : POPULATE_READ            :     0.030 ms
Anon 2 MiB     : POPULATE_WRITE           :     0.030 ms
Memfd 4 KiB    : Read                     :     0.412 ms
Memfd 4 KiB    : Write                    :     0.372 ms
Memfd 4 KiB    : Read/Write               :     0.419 ms
Memfd 4 KiB    : POPULATE_READ            :     0.343 ms
Memfd 4 KiB    : POPULATE_WRITE           :     0.288 ms
Memfd 4 KiB    : FALLOCATE                :     0.137 ms
Memfd 4 KiB    : FALLOCATE+Read           :     0.446 ms
Memfd 4 KiB    : FALLOCATE+Write          :     0.330 ms
Memfd 4 KiB    : FALLOCATE+Read/Write     :     0.454 ms
Memfd 4 KiB    : FALLOCATE+POPULATE_READ  :     0.379 ms
Memfd 4 KiB    : FALLOCATE+POPULATE_WRITE :     0.268 ms
Memfd 2 MiB    : Read                     :     0.030 ms
Memfd 2 MiB    : Write                    :     0.030 ms
Memfd 2 MiB    : Read/Write               :     0.030 ms
Memfd 2 MiB    : POPULATE_READ            :     0.030 ms
Memfd 2 MiB    : POPULATE_WRITE           :     0.030 ms
Memfd 2 MiB    : FALLOCATE                :     0.030 ms
Memfd 2 MiB    : FALLOCATE+Read           :     0.031 ms
Memfd 2 MiB    : FALLOCATE+Write          :     0.031 ms
Memfd 2 MiB    : FALLOCATE+Read/Write     :     0.031 ms
Memfd 2 MiB    : FALLOCATE+POPULATE_READ  :     0.030 ms
Memfd 2 MiB    : FALLOCATE+POPULATE_WRITE :     0.030 ms
tmpfs          : Read                     :     0.416 ms
tmpfs          : Write                    :     0.369 ms
tmpfs          : Read/Write               :     0.425 ms
tmpfs          : POPULATE_READ            :     0.346 ms
tmpfs          : POPULATE_WRITE           :     0.295 ms
tmpfs          : FALLOCATE                :     0.139 ms
tmpfs          : FALLOCATE+Read           :     0.447 ms
tmpfs          : FALLOCATE+Write          :     0.333 ms
tmpfs          : FALLOCATE+Read/Write     :     0.454 ms
tmpfs          : FALLOCATE+POPULATE_READ  :     0.380 ms
tmpfs          : FALLOCATE+POPULATE_WRITE :     0.272 ms
file           : Read                     :     0.191 ms
file           : Write                    :     0.511 ms
file           : Read/Write               :     0.524 ms
file           : POPULATE_READ            :     0.196 ms
file           : POPULATE_WRITE           :     0.434 ms
file           : FALLOCATE                :     0.004 ms
file           : FALLOCATE+Read           :     0.197 ms
file           : FALLOCATE+Write          :     0.554 ms
file           : FALLOCATE+Read/Write     :     0.480 ms
file           : FALLOCATE+POPULATE_READ  :     0.201 ms
file           : FALLOCATE+POPULATE_WRITE :     0.381 ms
hugetlbfs      : Read                     :     0.030 ms
hugetlbfs      : Write                    :     0.030 ms
hugetlbfs      : Read/Write               :     0.030 ms
hugetlbfs      : POPULATE_READ            :     0.030 ms
hugetlbfs      : POPULATE_WRITE           :     0.030 ms
hugetlbfs      : FALLOCATE                :     0.030 ms
hugetlbfs      : FALLOCATE+Read           :     0.031 ms
hugetlbfs      : FALLOCATE+Write          :     0.031 ms
hugetlbfs      : FALLOCATE+Read/Write     :     0.030 ms
hugetlbfs      : FALLOCATE+POPULATE_READ  :     0.030 ms
hugetlbfs      : FALLOCATE+POPULATE_WRITE :     0.030 ms
**************************************************
4096 MiB MAP_SHARED:
**************************************************
Anon 4 KiB     : Read                     :  1053.090 ms
Anon 4 KiB     : Write                    :   913.642 ms
Anon 4 KiB     : Read/Write               :  1060.350 ms
Anon 4 KiB     : POPULATE_READ            :   893.691 ms
Anon 4 KiB     : POPULATE_WRITE           :   782.885 ms
Anon 2 MiB     : Read                     :   358.553 ms
Anon 2 MiB     : Write                    :   358.419 ms
Anon 2 MiB     : Read/Write               :   357.992 ms
Anon 2 MiB     : POPULATE_READ            :   357.533 ms
Anon 2 MiB     : POPULATE_WRITE           :   357.808 ms
Memfd 4 KiB    : Read                     :  1078.144 ms
Memfd 4 KiB    : Write                    :   942.036 ms
Memfd 4 KiB    : Read/Write               :  1100.391 ms
Memfd 4 KiB    : POPULATE_READ            :   925.829 ms
Memfd 4 KiB    : POPULATE_WRITE           :   804.394 ms
Memfd 4 KiB    : FALLOCATE                :   304.632 ms
Memfd 4 KiB    : FALLOCATE+Read           :  1163.359 ms
Memfd 4 KiB    : FALLOCATE+Write          :   933.186 ms
Memfd 4 KiB    : FALLOCATE+Read/Write     :  1187.304 ms
Memfd 4 KiB    : FALLOCATE+POPULATE_READ  :  1013.660 ms
Memfd 4 KiB    : FALLOCATE+POPULATE_WRITE :   794.560 ms
Memfd 2 MiB    : Read                     :   358.131 ms
Memfd 2 MiB    : Write                    :   358.099 ms
Memfd 2 MiB    : Read/Write               :   358.250 ms
Memfd 2 MiB    : POPULATE_READ            :   357.563 ms
Memfd 2 MiB    : POPULATE_WRITE           :   357.334 ms
Memfd 2 MiB    : FALLOCATE                :   356.735 ms
Memfd 2 MiB    : FALLOCATE+Read           :   358.152 ms
Memfd 2 MiB    : FALLOCATE+Write          :   358.331 ms
Memfd 2 MiB    : FALLOCATE+Read/Write     :   358.018 ms
Memfd 2 MiB    : FALLOCATE+POPULATE_READ  :   357.286 ms
Memfd 2 MiB    : FALLOCATE+POPULATE_WRITE :   357.523 ms
tmpfs          : Read                     :  1087.265 ms
tmpfs          : Write                    :   950.840 ms
tmpfs          : Read/Write               :  1107.567 ms
tmpfs          : POPULATE_READ            :   922.605 ms
tmpfs          : POPULATE_WRITE           :   810.094 ms
tmpfs          : FALLOCATE                :   306.320 ms
tmpfs          : FALLOCATE+Read           :  1169.796 ms
tmpfs          : FALLOCATE+Write          :   933.730 ms
tmpfs          : FALLOCATE+Read/Write     :  1191.610 ms
tmpfs          : FALLOCATE+POPULATE_READ  :  1020.474 ms
tmpfs          : FALLOCATE+POPULATE_WRITE :   798.945 ms
file           : Read                     :   654.101 ms
file           : Write                    :  1259.142 ms
file           : Read/Write               :  1289.509 ms
file           : POPULATE_READ            :   661.642 ms
file           : POPULATE_WRITE           :  1106.816 ms
file           : FALLOCATE                :     1.864 ms
file           : FALLOCATE+Read           :   656.328 ms
file           : FALLOCATE+Write          :  1153.300 ms
file           : FALLOCATE+Read/Write     :  1180.613 ms
file           : FALLOCATE+POPULATE_READ  :   668.347 ms
file           : FALLOCATE+POPULATE_WRITE :   996.143 ms
hugetlbfs      : Read                     :   357.245 ms
hugetlbfs      : Write                    :   357.413 ms
hugetlbfs      : Read/Write               :   357.120 ms
hugetlbfs      : POPULATE_READ            :   356.321 ms
hugetlbfs      : POPULATE_WRITE           :   356.693 ms
hugetlbfs      : FALLOCATE                :   355.927 ms
hugetlbfs      : FALLOCATE+Read           :   357.074 ms
hugetlbfs      : FALLOCATE+Write          :   357.120 ms
hugetlbfs      : FALLOCATE+Read/Write     :   356.983 ms
hugetlbfs      : FALLOCATE+POPULATE_READ  :   356.413 ms
hugetlbfs      : FALLOCATE+POPULATE_WRITE :   356.266 ms
**************************************************

[1] https://lkml.org/lkml/2013/6/27/698

[akpm@linux-foundation.org: coding style fixes]

Link: https://lkml.kernel.org/r/20210419135443.12822-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:30 -07:00
Martynas Pumputis
e8b9eab992 net: retrieve netns cookie via getsocketopt
It's getting more common to run nested container environments for
testing cloud software. One of such examples is Kind [1] which runs a
Kubernetes cluster in Docker containers on a single host. Each container
acts as a Kubernetes node, and thus can run any Pod (aka container)
inside the former. This approach simplifies testing a lot, as it
eliminates complicated VM setups.

Unfortunately, such a setup breaks some functionality when cgroupv2 BPF
programs are used for load-balancing. The load-balancer BPF program
needs to detect whether a request originates from the host netns or a
container netns in order to allow some access, e.g. to a service via a
loopback IP address. Typically, the programs detect this by comparing
netns cookies with the one of the init ns via a call to
bpf_get_netns_cookie(NULL). However, in nested environments the latter
cannot be used given the Kubernetes node's netns is outside the init ns.
To fix this, we need to pass the Kubernetes node netns cookie to the
program in a different way: by extending getsockopt() with a
SO_NETNS_COOKIE option, the orchestrator which runs in the Kubernetes
node netns can retrieve the cookie and pass it to the program instead.

Thus, this is following up on Eric's commit 3d368ab87c ("net:
initialize net->net_cookie at netns setup") to allow retrieval via
SO_NETNS_COOKIE.  This is also in line in how we retrieve socket cookie
via SO_COOKIE.

  [1] https://kind.sigs.k8s.io/

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Martynas Pumputis <m@lambda.lt>
Cc: Eric Dumazet <edumazet@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-24 11:13:05 -07:00
Tiezhu Yang
1ddc96bd42 MIPS: kernel: Support extracting off-line stack traces from user-space with perf
Add perf_event_mips_regs/perf_reg_value/perf_reg_validate to support
features HAVE_PERF_REGS/HAVE_PERF_USER_STACK_DUMP in kernel.

[ayan@wavecomp.com: Repick this patch for unwinding userstack backtrace
 by perf and libunwind on MIPS based CPU.]

[ralf@linux-mips.org: Add perf_get_regs_user() which is required after
'commit 88a7c26af8 ("perf: Move task_pt_regs sampling into arch code")'.]

[yangtiezhu@loongson.cn: Fix build error about perf_get_regs_user() after
commit 76a4efa809 ("perf/arch: Remove perf_sample_data::regs_user_copy"),
and also separate the original patches into two parts (MIPS kernel and perf
tools) to merge easily.]

The original patches:
https://lore.kernel.org/patchwork/patch/1126521/
https://lore.kernel.org/patchwork/patch/1126520/

Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Archer Yan <ayan@wavecomp.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2021-02-04 21:55:45 +01:00
Alexander Lobakin
ccb2177486 MIPS: UAPI: unexport unistd_nr_{n32,n64,o32}.h
unistd_nr_{n32,n64,o32}.h are needed only by include/asm/unistd.h,
which is a kernel-side header file, and their contents is generally
not for userland use.
Move their target destination from include/generated/uapi/asm/ to
include/generated/asm/ to disable exporting them as UAPI headers.

Signed-off-by: Alexander Lobakin <alobakin@pm.me>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2021-01-07 17:14:56 +01:00
Linus Torvalds
d635a69dd4 Merge tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
 "Core:

   - support "prefer busy polling" NAPI operation mode, where we defer
     softirq for some time expecting applications to periodically busy
     poll

   - AF_XDP: improve efficiency by more batching and hindering the
     adjacency cache prefetcher

   - af_packet: make packet_fanout.arr size configurable up to 64K

   - tcp: optimize TCP zero copy receive in presence of partial or
     unaligned reads making zero copy a performance win for much smaller
     messages

   - XDP: add bulk APIs for returning / freeing frames

   - sched: support fragmenting IP packets as they come out of conntrack

   - net: allow virtual netdevs to forward UDP L4 and fraglist GSO skbs

  BPF:

   - BPF switch from crude rlimit-based to memcg-based memory accounting

   - BPF type format information for kernel modules and related tracing
     enhancements

   - BPF implement task local storage for BPF LSM

   - allow the FENTRY/FEXIT/RAW_TP tracing programs to use
     bpf_sk_storage

  Protocols:

   - mptcp: improve multiple xmit streams support, memory accounting and
     many smaller improvements

   - TLS: support CHACHA20-POLY1305 cipher

   - seg6: add support for SRv6 End.DT4/DT6 behavior

   - sctp: Implement RFC 6951: UDP Encapsulation of SCTP

   - ppp_generic: add ability to bridge channels directly

   - bridge: Connectivity Fault Management (CFM) support as is defined
     in IEEE 802.1Q section 12.14.

  Drivers:

   - mlx5: make use of the new auxiliary bus to organize the driver
     internals

   - mlx5: more accurate port TX timestamping support

   - mlxsw:
      - improve the efficiency of offloaded next hop updates by using
        the new nexthop object API
      - support blackhole nexthops
      - support IEEE 802.1ad (Q-in-Q) bridging

   - rtw88: major bluetooth co-existance improvements

   - iwlwifi: support new 6 GHz frequency band

   - ath11k: Fast Initial Link Setup (FILS)

   - mt7915: dual band concurrent (DBDC) support

   - net: ipa: add basic support for IPA v4.5

  Refactor:

   - a few pieces of in_interrupt() cleanup work from Sebastian Andrzej
     Siewior

   - phy: add support for shared interrupts; get rid of multiple driver
     APIs and have the drivers write a full IRQ handler, slight growth
     of driver code should be compensated by the simpler API which also
     allows shared IRQs

   - add common code for handling netdev per-cpu counters

   - move TX packet re-allocation from Ethernet switch tag drivers to a
     central place

   - improve efficiency and rename nla_strlcpy

   - number of W=1 warning cleanups as we now catch those in a patchwork
     build bot

  Old code removal:

   - wan: delete the DLCI / SDLA drivers

   - wimax: move to staging

   - wifi: remove old WDS wifi bridging support"

* tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1922 commits)
  net: hns3: fix expression that is currently always true
  net: fix proc_fs init handling in af_packet and tls
  nfc: pn533: convert comma to semicolon
  af_vsock: Assign the vsock transport considering the vsock address flags
  af_vsock: Set VMADDR_FLAG_TO_HOST flag on the receive path
  vsock_addr: Check for supported flag values
  vm_sockets: Add VMADDR_FLAG_TO_HOST vsock flag
  vm_sockets: Add flags field in the vsock address data structure
  net: Disable NETIF_F_HW_TLS_TX when HW_CSUM is disabled
  tcp: Add logic to check for SYN w/ data in tcp_simple_retransmit
  net: mscc: ocelot: install MAC addresses in .ndo_set_rx_mode from process context
  nfc: s3fwrn5: Release the nfc firmware
  net: vxget: clean up sparse warnings
  mlxsw: spectrum_router: Use eXtended mezzanine to offload IPv4 router
  mlxsw: spectrum: Set KVH XLT cache mode for Spectrum2/3
  mlxsw: spectrum_router_xm: Introduce basic XM cache flushing
  mlxsw: reg: Add Router LPM Cache Enable Register
  mlxsw: reg: Add Router LPM Cache ML Delete Register
  mlxsw: spectrum_router_xm: Implement L-value tracking for M-index
  mlxsw: reg: Add XM Router M Table Register
  ...
2020-12-15 13:22:29 -08:00
Björn Töpel
7c951cafc0 net: Add SO_BUSY_POLL_BUDGET socket option
This option lets a user set a per socket NAPI budget for
busy-polling. If the options is not set, it will use the default of 8.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20201130185205.196029-3-bjorn.topel@gmail.com
2020-12-01 00:09:25 +01:00
Björn Töpel
7fd3253a7d net: Introduce preferred busy-polling
The existing busy-polling mode, enabled by the SO_BUSY_POLL socket
option or system-wide using the /proc/sys/net/core/busy_read knob, is
an opportunistic. That means that if the NAPI context is not
scheduled, it will poll it. If, after busy-polling, the budget is
exceeded the busy-polling logic will schedule the NAPI onto the
regular softirq handling.

One implication of the behavior above is that a busy/heavy loaded NAPI
context will never enter/allow for busy-polling. Some applications
prefer that most NAPI processing would be done by busy-polling.

This series adds a new socket option, SO_PREFER_BUSY_POLL, that works
in concert with the napi_defer_hard_irqs and gro_flush_timeout
knobs. The napi_defer_hard_irqs and gro_flush_timeout knobs were
introduced in commit 6f8b12d661 ("net: napi: add hard irqs deferral
feature"), and allows for a user to defer interrupts to be enabled and
instead schedule the NAPI context from a watchdog timer. When a user
enables the SO_PREFER_BUSY_POLL, again with the other knobs enabled,
and the NAPI context is being processed by a softirq, the softirq NAPI
processing will exit early to allow the busy-polling to be performed.

If the application stops performing busy-polling via a system call,
the watchdog timer defined by gro_flush_timeout will timeout, and
regular softirq handling will resume.

In summary; Heavy traffic applications that prefer busy-polling over
softirq processing should use this option.

Example usage:

  $ echo 2 | sudo tee /sys/class/net/ens785f1/napi_defer_hard_irqs
  $ echo 200000 | sudo tee /sys/class/net/ens785f1/gro_flush_timeout

Note that the timeout should be larger than the userspace processing
window, otherwise the watchdog will timeout and fall back to regular
softirq processing.

Enable the SO_BUSY_POLL/SO_PREFER_BUSY_POLL options on your socket.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20201130185205.196029-2-bjorn.topel@gmail.com
2020-12-01 00:09:25 +01:00
Peter Collingbourne
1d82b7898f arch: move SA_* definitions to generic headers
Most architectures with the exception of alpha, mips, parisc and
sparc use the same values for these flags. Move their definitions into
asm-generic/signal-defs.h and allow the architectures with non-standard
values to override them. Also, document the non-standard flag values
in order to make it easier to add new generic flags in the future.

A consequence of this change is that on powerpc and x86, the constants'
values aside from SA_RESETHAND change signedness from unsigned
to signed. This is not expected to impact realistic use of these
constants. In particular the typical use of the constants where they
are or'ed together and assigned to sa_flags (or another int variable)
would not be affected.

Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ia3849f18b8009bf41faca374e701cdca36974528
Link: https://lkml.kernel.org/r/b6d0d1ec34f9ee93e1105f14f288fba5f89d1f24.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-11-23 10:31:05 -06:00
Jiaxun Yang
35546aeede MIPS: Retire kvm paravirt
paravirt machine was introduced for Cavium's partial virtualization
technology, however, it's host side support and QEMU support never
landed in upstream.

As Cavium was acquired by Marvel and they have no intention to maintain
their MIPS product line, also paravirt is unlikely to be utilized by
community users, it's time to retire it if nobody steps in to maintain
it.

Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2020-07-24 10:53:23 +02:00
Huacai Chen
7f2a83f1c2 KVM: MIPS: Add CPUCFG emulation for Loongson-3
Loongson-3 overrides lwc2 instructions to implement CPUCFG and CSR
read/write functions. These instructions all cause guest exit so CSR
doesn't benifit KVM guest (and there are always legacy methods to
provide the same functions as CSR). So, we only emulate CPUCFG and let
it return a reduced feature list (which means the virtual CPU doesn't
have any other advanced features, including CSR) in KVM.

Reviewed-by: Aleksandar Markovic <aleksandar.qemu.devel@gmail.com>
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Co-developed-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Message-Id: <1590220602-3547-12-git-send-email-chenhc@lemote.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-06-04 13:51:33 -04:00
WANG Xuerui
f06da27eb8 MIPS: Expose Loongson CPUCFG availability via HWCAP
The point is to allow userspace to probe for CPUCFG without possibly
triggering invalid instructions. In addition to that, future Loongson
feature bits could all be stuffed into CPUCFG bit fields (or "leaves"
in x86-speak) if Loongson does not make mistakes, so ELF HWCAP bits are
conserved.

Userspace can determine native CPUCFG availability by checking the LCSRP
(Loongson CSR Present) bit in CPUCFG output after seeing CPUCFG bit in
HWCAP. Native CPUCFG always sets the LCSRP bit, as CPUCFG is part of the
Loongson CSR ASE, while the emulation intentionally leaves this bit
clear.

The other existing Loongson-specific HWCAP bits are, to my best
knowledge, unused, as

(1) they are fairly recent additions,
(2) Loongson never back-ported the patch into their kernel fork, and
(3) Loongson's existing installed base rarely upgrade, if ever;

However, they are still considered userspace ABI, hence unfortunately
unremovable. But hopefully at least we could stop adding new Loongson
HWCAP bits in the future.

Cc: Paul Burton <paulburton@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Huacai Chen <chenhc@lemote.com>
Signed-off-by: WANG Xuerui <git@xen0n.name>
Reviewed-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2020-05-31 10:53:56 +02:00
Huacai Chen
f83e4f9896 MIPS: Loongson-3: Add some unaligned instructions emulation
1, Add unaligned gslq, gssq, gslqc1, gssqc1 emulation;
2, Add unaligned gsl{h, w, d}x, gss{h, w, d}x emulation;
3, Add unaligned gslwxc1, gsswxc1, gsldxc1, gssdxc1 emulation.

Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Pei Huang <huangpei@loongson.cn>
Reviewed-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2020-04-24 18:18:38 +02:00
Masahiro Yamada
0fb9dc2867 arch: sembuf.h: make uapi asm/sembuf.h self-contained
Userspace cannot compile <asm/sembuf.h> due to some missing type
definitions.  For example, building it for x86 fails as follows:

    CC      usr/include/asm/sembuf.h.s
  In file included from <command-line>:32:0:
  usr/include/asm/sembuf.h:17:20: error: field `sem_perm' has incomplete type
    struct ipc64_perm sem_perm; /* permissions .. see ipc.h */
                      ^~~~~~~~
  usr/include/asm/sembuf.h:24:2: error: unknown type name `__kernel_time_t'
    __kernel_time_t sem_otime; /* last semop time */
    ^~~~~~~~~~~~~~~
  usr/include/asm/sembuf.h:25:2: error: unknown type name `__kernel_ulong_t'
    __kernel_ulong_t __unused1;
    ^~~~~~~~~~~~~~~~
  usr/include/asm/sembuf.h:26:2: error: unknown type name `__kernel_time_t'
    __kernel_time_t sem_ctime; /* last change time */
    ^~~~~~~~~~~~~~~
  usr/include/asm/sembuf.h:27:2: error: unknown type name `__kernel_ulong_t'
    __kernel_ulong_t __unused2;
    ^~~~~~~~~~~~~~~~
  usr/include/asm/sembuf.h:29:2: error: unknown type name `__kernel_ulong_t'
    __kernel_ulong_t sem_nsems; /* no. of semaphores in array */
    ^~~~~~~~~~~~~~~~
  usr/include/asm/sembuf.h:30:2: error: unknown type name `__kernel_ulong_t'
    __kernel_ulong_t __unused3;
    ^~~~~~~~~~~~~~~~
  usr/include/asm/sembuf.h:31:2: error: unknown type name `__kernel_ulong_t'
    __kernel_ulong_t __unused4;
    ^~~~~~~~~~~~~~~~

It is just a matter of missing include directive.

Include <asm/ipcbuf.h> to make it self-contained, and add it to
the compile-test coverage.

Link: http://lkml.kernel.org/r/20191030063855.9989-3-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-04 19:44:14 -08:00
Masahiro Yamada
9ef0e00418 arch: msgbuf.h: make uapi asm/msgbuf.h self-contained
Userspace cannot compile <asm/msgbuf.h> due to some missing type
definitions.  For example, building it for x86 fails as follows:

    CC      usr/include/asm/msgbuf.h.s
  In file included from usr/include/asm/msgbuf.h:6:0,
                   from <command-line>:32:
  usr/include/asm-generic/msgbuf.h:25:20: error: field `msg_perm' has incomplete type
    struct ipc64_perm msg_perm;
                      ^~~~~~~~
  usr/include/asm-generic/msgbuf.h:27:2: error: unknown type name `__kernel_time_t'
    __kernel_time_t msg_stime; /* last msgsnd time */
    ^~~~~~~~~~~~~~~
  usr/include/asm-generic/msgbuf.h:28:2: error: unknown type name `__kernel_time_t'
    __kernel_time_t msg_rtime; /* last msgrcv time */
    ^~~~~~~~~~~~~~~
  usr/include/asm-generic/msgbuf.h:29:2: error: unknown type name `__kernel_time_t'
    __kernel_time_t msg_ctime; /* last change time */
    ^~~~~~~~~~~~~~~
  usr/include/asm-generic/msgbuf.h:41:2: error: unknown type name `__kernel_pid_t'
    __kernel_pid_t msg_lspid; /* pid of last msgsnd */
    ^~~~~~~~~~~~~~
  usr/include/asm-generic/msgbuf.h:42:2: error: unknown type name `__kernel_pid_t'
    __kernel_pid_t msg_lrpid; /* last receive pid */
    ^~~~~~~~~~~~~~

It is just a matter of missing include directive.

Include <asm/ipcbuf.h> to make it self-contained, and add it to
the compile-test coverage.

Link: http://lkml.kernel.org/r/20191030063855.9989-2-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-04 19:44:14 -08:00
Arnd Bergmann
1bf883c1a9 y2038: stat: avoid 'time_t' in 'struct stat'
The time_t definition may differ between user space and kernel space,
so replace time_t with an unambiguous 'long' for the mips and sparc.

The same structures also contain 'off_t', which has the same problem,
so replace that as well on those two architectures and powerpc.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-15 14:38:28 +01:00
Arnd Bergmann
caf5e32d4e y2038: ipc: remove __kernel_time_t reference from headers
There are two structures based on time_t that conflict between libc and
kernel: timeval and timespec. Both are now renamed to __kernel_old_timeval
and __kernel_old_timespec.

For time_t, the old typedef is still __kernel_time_t. There is nothing
wrong with that name, but it would be nice to not use that going forward
as this type is used almost only in deprecated interfaces because of
the y2038 overflow.

In the IPC headers (msgbuf.h, sembuf.h, shmbuf.h), __kernel_time_t is only
used for the 64-bit variants, which are not deprecated.

Change these to a plain 'long', which is the same type as __kernel_time_t
on all 64-bit architectures anyway, to reduce the number of users of the
old type.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-11-15 14:38:28 +01:00
Jiaxun Yang
38dffe1e4d MIPS: elf_hwcap: Export userspace ASEs
A Golang developer reported MIPS hwcap isn't reflecting instructions
that the processor actually supported so programs can't apply optimized
code at runtime.

Thus we export the ASEs that can be used in userspace programs.

Reported-by: Meng Zhuo <mengzhuo1203@gmail.com>
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: linux-mips@vger.kernel.org
Cc: Paul Burton <paul.burton@mips.com>
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Paul Burton <paul.burton@mips.com>
2019-10-10 11:57:36 -07:00
Minchan Kim
1a4e58cce8 mm: introduce MADV_PAGEOUT
When a process expects no accesses to a certain memory range for a long
time, it could hint kernel that the pages can be reclaimed instantly but
data should be preserved for future use.  This could reduce workingset
eviction so it ends up increasing performance.

This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall.
MADV_PAGEOUT can be used by a process to mark a memory range as not
expected to be used for a long time so that kernel reclaims *any LRU*
pages instantly.  The hint can help kernel in deciding which pages to
evict proactively.

A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit
intentionally because it's automatically bounded by PMD size.  If PMD
size(e.g., 256) makes some trouble, we could fix it later by limit it to
SWAP_CLUSTER_MAX[1].

- man-page material

MADV_PAGEOUT (since Linux x.x)

Do not expect access in the near future so pages in the specified
regions could be reclaimed instantly regardless of memory pressure.
Thus, access in the range after successful operation could cause
major page fault but never lose the up-to-date contents unlike
MADV_DONTNEED. Pages belonging to a shared mapping are only processed
if a write access is allowed for the calling process.

MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or
VM_PFNMAP pages.

[1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/

[minchan@kernel.org: clear PG_active on MADV_PAGEOUT]
  Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com
[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-25 17:51:41 -07:00
Minchan Kim
9c276cc65a mm: introduce MADV_COLD
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7.

- Background

The Android terminology used for forking a new process and starting an app
from scratch is a cold start, while resuming an existing app is a hot
start.  While we continually try to improve the performance of cold
starts, hot starts will always be significantly less power hungry as well
as faster so we are trying to make hot start more likely than cold start.

To increase hot start, Android userspace manages the order that apps
should be killed in a process called ActivityManagerService.
ActivityManagerService tracks every Android app or service that the user
could be interacting with at any time and translates that into a ranked
list for lmkd(low memory killer daemon).  They are likely to be killed by
lmkd if the system has to reclaim memory.  In that sense they are similar
to entries in any other cache.  Those apps are kept alive for
opportunistic performance improvements but those performance improvements
will vary based on the memory requirements of individual workloads.

- Problem

Naturally, cached apps were dominant consumers of memory on the system.
However, they were not significant consumers of swap even though they are
good candidate for swap.  Under investigation, swapping out only begins
once the low zone watermark is hit and kswapd wakes up, but the overall
allocation rate in the system might trip lmkd thresholds and cause a
cached process to be killed(we measured performance swapping out vs.
zapping the memory by killing a process.  Unsurprisingly, zapping is 10x
times faster even though we use zram which is much faster than real
storage) so kill from lmkd will often satisfy the high zone watermark,
resulting in very few pages actually being moved to swap.

- Approach

The approach we chose was to use a new interface to allow userspace to
proactively reclaim entire processes by leveraging platform information.
This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages
that are known to be cold from userspace and to avoid races with lmkd by
reclaiming apps as soon as they entered the cached state.  Additionally,
it could provide many chances for platform to use much information to
optimize memory efficiency.

To achieve the goal, the patchset introduce two new options for madvise.
One is MADV_COLD which will deactivate activated pages and the other is
MADV_PAGEOUT which will reclaim private pages instantly.  These new
options complement MADV_DONTNEED and MADV_FREE by adding non-destructive
ways to gain some free memory space.  MADV_PAGEOUT is similar to
MADV_DONTNEED in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed immediately; MADV_COLD is similar
to MADV_FREE in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed when memory pressure rises.

This patch (of 5):

When a process expects no accesses to a certain memory range, it could
give a hint to kernel that the pages can be reclaimed when memory pressure
happens but data should be preserved for future use.  This could reduce
workingset eviction so it ends up increasing performance.

This patch introduces the new MADV_COLD hint to madvise(2) syscall.
MADV_COLD can be used by a process to mark a memory range as not expected
to be used in the near future.  The hint can help kernel in deciding which
pages to evict early during memory pressure.

It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves

	active file page -> inactive file LRU
	active anon page -> inacdtive anon LRU

Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file
LRU's head because MADV_COLD is a little bit different symantic.
MADV_FREE means it's okay to discard when the memory pressure because the
content of the page is *garbage* so freeing such pages is almost zero
overhead since we don't need to swap out and access afterward causes just
minor fault.  Thus, it would make sense to put those freeable pages in
inactive file LRU to compete other used-once pages.  It makes sense for
implmentaion point of view, too because it's not swapbacked memory any
longer until it would be re-dirtied.  Even, it could give a bonus to make
them be reclaimed on swapless system.  However, MADV_COLD doesn't mean
garbage so reclaiming them requires swap-out/in in the end so it's bigger
cost.  Since we have designed VM LRU aging based on cost-model, anonymous
cold pages would be better to position inactive anon's LRU list, not file
LRU.  Furthermore, it would help to avoid unnecessary scanning if system
doesn't have a swap device.  Let's start simpler way without adding
complexity at this moment.  However, keep in mind, too that it's a caveat
that workloads with a lot of pages cache are likely to ignore MADV_COLD on
anonymous memory because we rarely age anonymous LRU lists.

* man-page material

MADV_COLD (since Linux x.x)

Pages in the specified regions will be treated as less-recently-accessed
compared to pages in the system with similar access frequencies.  In
contrast to MADV_FREE, the contents of the region are preserved regardless
of subsequent writes to pages.

MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP
pages.

[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-25 17:51:41 -07:00
David S. Miller
dca73a65a6 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2019-06-19

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) new SO_REUSEPORT_DETACH_BPF setsocktopt, from Martin.

2) BTF based map definition, from Andrii.

3) support bpf_map_lookup_elem for xskmap, from Jonathan.

4) bounded loops and scalar precision logic in the verifier, from Alexei.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-20 00:06:27 -04:00