Commit Graph

790 Commits

Author SHA1 Message Date
Tejun Heo
af73f5c9fe workqueue: Rename workqueue_attrs->no_numa to ->ordered
With the recent removal of NUMA related module param and sysfs knob,
workqueue_attrs->no_numa is now only used to implement ordered workqueues.
Let's rename the field so that it's less confusing especially with the
planned CPU affinity awareness improvements.

Just a rename. No functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
636b927eba workqueue: Make unbound workqueues to use per-cpu pool_workqueues
A pwq (pool_workqueue) represents an association between a workqueue and a
worker_pool. When a work item is queued, the workqueue selects the pwq to
use, which in turn determines the pool, and queues the work item to the pool
through the pwq. pwq is also what implements the maximum concurrency limit -
@max_active.

As a per-cpu workqueue should be assocaited with a different worker_pool on
each CPU, it always had per-cpu pwq's that are accessed through wq->cpu_pwq.
However, unbound workqueues were sharing a pwq within each NUMA node by
default. The sharing has several downsides:

* Because @max_active is per-pwq, the meaning of @max_active changes
  depending on the machine configuration and whether workqueue NUMA locality
  support is enabled.

* Makes per-cpu and unbound code deviate.

* Gets in the way of making workqueue CPU locality awareness more flexible.

This patch makes unbound workqueues use per-cpu pwq's the same way per-cpu
workqueues do by making the following changes:

* wq->numa_pwq_tbl[] is removed and unbound workqueues now use wq->cpu_pwq
  just like per-cpu workqueues. wq->cpu_pwq is now RCU protected for unbound
  workqueues.

* numa_pwq_tbl_install() is renamed to install_unbound_pwq() and installs
  the specified pwq to the target CPU's wq->cpu_pwq.

* apply_wqattrs_prepare() now always allocates a separate pwq for each CPU
  unless the workqueue is ordered. If ordered, all CPUs use wq->dfl_pwq.
  This makes the return value of wq_calc_node_cpumask() unnecessary. It now
  returns void.

* @max_active now means the same thing for both per-cpu and unbound
  workqueues. WQ_UNBOUND_MAX_ACTIVE now equals WQ_MAX_ACTIVE and
  documentation is updated accordingly. WQ_UNBOUND_MAX_ACTIVE is no longer
  used in workqueue implementation and will be removed later.

* All unbound pwq operations which used to be per-numa-node are now per-cpu.

For most unbound workqueue users, this shouldn't cause noticeable changes.
Work item issue and completion will be a small bit faster, flush_workqueue()
would become a bit more expensive, and the total concurrency limit would
likely become higher. All @max_active==1 use cases are currently being
audited for conversion into alloc_ordered_workqueue() and they shouldn't be
affected once the audit and conversion is complete.

One area where the behavior change may be more noticeable is
workqueue_congested() as the reported congestion state is now per CPU
instead of NUMA node. There are only two users of this interface -
drivers/infiniband/hw/hfi1 and net/smc. Maintainers of both subsystems are
cc'd. Inputs on the behavior change would be very much appreciated.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Karsten Graul <kgraul@linux.ibm.com>
Cc: Wenjia Zhang <wenjia@linux.ibm.com>
Cc: Jan Karcher <jaka@linux.ibm.com>
2023-08-07 15:57:23 -10:00
Tejun Heo
4cbfd3de73 workqueue: Call wq_update_unbound_numa() on all CPUs in NUMA node on CPU hotplug
When a CPU went online or offline, wq_update_unbound_numa() was called only
on the CPU which was going up or down. This works fine because all CPUs on
the same NUMA node share the same pool_workqueue slot - one CPU updating it
updates it for everyone in the node.

However, future changes will make each CPU use a separate pool_workqueue
even when they're sharing the same worker_pool, which requires updating
pool_workqueue's for all CPUs which may be sharing the same pool_workqueue
on hotplug.

To accommodate the planned changes, this patch updates
workqueue_on/offline_cpu() so that they call wq_update_unbound_numa() for
all CPUs sharing the same NUMA node as the CPU going up or down. In the
current code, the second+ calls would be noops and there shouldn't be any
behavior changes.

* As wq_update_unbound_numa() is now called on multiple CPUs per each
  hotplug event, @cpu is renamed to @hotplug_cpu and another @cpu argument
  is added. The former indicates the CPU being hot[un]plugged and the latter
  the CPU whose pool_workqueue is being updated.

* In wq_update_unbound_numa(), cpu_off is renamed to off_cpu for consistency
  with the new @hotplug_cpu.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
687a9aa56f workqueue: Make per-cpu pool_workqueues allocated and released like unbound ones
Currently, all per-cpu pwq's (pool_workqueue's) are allocated directly
through a per-cpu allocation and thus, unlike unbound workqueues, not
reference counted. This difference in lifetime management between the two
types is a bit confusing.

Unbound workqueues are currently accessed through wq->numa_pwq_tbl[] which
isn't suitiable for the planned CPU locality related improvements. The plan
is to unify pwq handling across per-cpu and unbound workqueues so that
they're always accessed through wq->cpu_pwq.

In preparation, this patch makes per-cpu pwq's to be allocated, reference
counted and released the same way as unbound pwq's. wq->cpu_pwq now holds
pointers to pwq's instead of containing them directly.

pwq_unbound_release_workfn() is renamed to pwq_release_workfn() as it's now
also used for per-cpu work items.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
967b494e2f workqueue: Use a kthread_worker to release pool_workqueues
pool_workqueue release path is currently bounced to system_wq; however, this
is a bit tricky because this bouncing occurs while holding a pool lock and
thus has risk of causing a A-A deadlock. This is currently addressed by the
fact that only unbound workqueues use this bouncing path and system_wq is a
per-cpu workqueue.

While this works, it's brittle and requires a work-around like setting the
lockdep subclass for the lock of unbound pools. Besides, future changes will
use the bouncing path for per-cpu workqueues too making the current approach
unusable.

Let's just use a dedicated kthread_worker to untangle the dependency. This
is just one more kthread for all workqueues and makes the pwq release logic
simpler and more robust.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
fcecfa8f27 workqueue: Remove module param disable_numa and sysfs knobs pool_ids and numa
Unbound workqueue CPU affinity is going to receive an overhaul and the NUMA
specific knobs won't make sense anymore. Remove them. Also, the pool_ids
knob was used for debugging and not really meaningful given that there is no
visibility into the pools associated with those IDs. Remove it too. A future
patch will improve overall visibility.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
797e8345cb workqueue: Relocate worker and work management functions
Collect first_idle_worker(), worker_enter/leave_idle(),
find_worker_executing_work(), move_linked_works() and wake_up_worker() into
one place. These functions will later be used to implement higher level
worker management logic.

No functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
ee1ceef727 workqueue: Rename wq->cpu_pwqs to wq->cpu_pwq
wq->cpu_pwqs is a percpu variable carraying one pointer to a pool_workqueue.
The field name being plural is unusual and confusing. Rename it to singular.

This patch doesn't cause any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:23 -10:00
Tejun Heo
fe089f87cc workqueue: Not all work insertion needs to wake up a worker
insert_work() always tried to wake up a worker; however, the only time it
needs to try to wake up a worker is when a new active work item is queued.
When a work item goes on the inactive list or queueing a flush work item,
there's no reason to try to wake up a worker.

This patch moves the worker wakeup logic out of insert_work() and places it
in the active new work item queueing path in __queue_work().

While at it:

* __queue_work() is dereferencing pwq->pool repeatedly. Add local variable
  pool.

* Every caller of insert_work() calls debug_work_activate(). Consolidate the
  invocations into insert_work().

* In __queue_work() pool->watchdog_ts update is relocated slightly. This is
  to better accommodate future changes.

This makes wakeups more precise and will help the planned change to assign
work items to workers before waking them up. No behavior changes intended.

v2: WARN_ON_ONCE(pool != last_pool) added in __queue_work() to clarify as
    suggested by Lai.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
2023-08-07 15:57:22 -10:00
Tejun Heo
c0ab017d43 workqueue: Cleanups around process_scheduled_works()
* Drop the trivial optimization in worker_thread() where it bypasses calling
  process_scheduled_works() if the first work item isn't linked. This is a
  mostly pointless micro optimization and gets in the way of improving the
  work processing path.

* Consolidate pool->watchdog_ts updates in the two callers into
  process_scheduled_works().

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:22 -10:00
Tejun Heo
bc8b50c2df workqueue: Drop the special locking rule for worker->flags and worker_pool->flags
worker->flags used to be accessed from scheduler hooks without grabbing
pool->lock for concurrency management. This is no longer true since
6d25be5782 ("sched/core, workqueues: Distangle worker accounting from rq
lock"). Also, it's unclear why worker_pool->flags was using the "X" rule.
All relevant users are accessing it under the pool lock.

Let's drop the special "X" rule and use the "L" rule for these flag fields
instead. While at it, replace the CONTEXT comment with
lockdep_assert_held().

This allows worker_set/clr_flags() to be used from context which isn't the
worker itself. This will be used later to implement assinging work items to
workers before waking them up so that workqueue can have better control over
which worker executes which work item on which CPU.

The only actual changes are sanity checks. There shouldn't be any visible
behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:57:22 -10:00
Tejun Heo
87437656c2 workqueue: Merge branch 'for-6.5-fixes' into for-6.6
Unbound workqueue execution locality improvement patchset is about to
applied which will cause merge conflicts with changes in for-6.5-fixes.
Let's avoid future merge conflict by pulling in for-6.5-fixes.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 15:54:25 -10:00
Yang Yingliang
9680540c0c workqueue: use LIST_HEAD to initialize cull_list
Use LIST_HEAD() to initialize cull_list instead of open-coding it.

Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2023-08-07 08:36:51 -10:00
Tejun Heo
aa6fde93f3 workqueue: Scale up wq_cpu_intensive_thresh_us if BogoMIPS is below 4000
wq_cpu_intensive_thresh_us is used to detect CPU-hogging per-cpu work items.
Once detected, they're excluded from concurrency management to prevent them
from blocking other per-cpu work items. If CONFIG_WQ_CPU_INTENSIVE_REPORT is
enabled, repeat offenders are also reported so that the code can be updated.

The default threshold is 10ms which is long enough to do fair bit of work on
modern CPUs while short enough to be usually not noticeable. This
unfortunately leads to a lot of, arguable spurious, detections on very slow
CPUs. Using the same threshold across CPUs whose performance levels may be
apart by multiple levels of magnitude doesn't make whole lot of sense.

This patch scales up wq_cpu_intensive_thresh_us upto 1 second when BogoMIPS
is below 4000. This is obviously very inaccurate but it doesn't have to be
accurate to be useful. The mechanism is still useful when the threshold is
fully scaled up and the benefits of reports are usually shared with everyone
regardless of who's reporting, so as long as there are sufficient number of
fast machines reporting, we don't lose much.

Some (or is it all?) ARM CPUs systemtically report significantly lower
BogoMIPS. While this doesn't break anything, given how widespread ARM CPUs
are, it's at least a missed opportunity and it probably would be a good idea
to teach workqueue about it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
2023-07-25 11:49:57 -10:00
tiozhang
ace3c5499e workqueue: add cmdline parameter workqueue.unbound_cpus to further constrain wq_unbound_cpumask at boot time
Motivation of doing this is to better improve boot times for devices when
we want to prevent our workqueue works from running on some specific CPUs,
e,g, some CPUs are busy with interrupts.

Signed-off-by: tiozhang <tiozhang@didiglobal.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2023-07-10 10:42:51 -10:00
Tetsuo Handa
20bdedafd2 workqueue: Warn attempt to flush system-wide workqueues.
Based on commit c4f135d643 ("workqueue: Wrap flush_workqueue() using
a macro"), all in-tree users stopped flushing system-wide workqueues.
Therefore, start emitting runtime message so that all out-of-tree users
will understand that they need to update their code.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
2023-07-10 10:39:17 -10:00
Linus Torvalds
7ab044a4f4 Merge tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:

 - Concurrency-managed per-cpu work items that hog CPUs and delay the
   execution of other work items are now automatically detected and
   excluded from concurrency management. Reporting on such work items
   can also be enabled through a config option.

 - Added tools/workqueue/wq_monitor.py which improves visibility into
   workqueue usages and behaviors.

 - Arnd's minimal fix for gcc-13 enum warning on 32bit compiles,
   superseded by commit afa4bb778e in mainline.

* tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: Disable per-cpu CPU hog detection when wq_cpu_intensive_thresh_us is 0
  workqueue: Fix WARN_ON_ONCE() triggers in worker_enter_idle()
  workqueue: fix enum type for gcc-13
  workqueue: Track and monitor per-workqueue CPU time usage
  workqueue: Report work funcs that trigger automatic CPU_INTENSIVE mechanism
  workqueue: Automatically mark CPU-hogging work items CPU_INTENSIVE
  workqueue: Improve locking rule description for worker fields
  workqueue: Move worker_set/clr_flags() upwards
  workqueue: Re-order struct worker fields
  workqueue: Add pwq->stats[] and a monitoring script
  Further upgrade queue_work_on() comment
2023-06-27 16:32:52 -07:00
Linus Torvalds
afa4bb778e workqueue: clean up WORK_* constant types, clarify masking
Dave Airlie reports that gcc-13.1.1 has started complaining about some
of the workqueue code in 32-bit arm builds:

  kernel/workqueue.c: In function ‘get_work_pwq’:
  kernel/workqueue.c:713:24: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
    713 |                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
        |                        ^
  [ ... a couple of other cases ... ]

and while it's not immediately clear exactly why gcc started complaining
about it now, I suspect it's some C23-induced enum type handlign fixup in
gcc-13 is the cause.

Whatever the reason for starting to complain, the code and data types
are indeed disgusting enough that the complaint is warranted.

The wq code ends up creating various "helper constants" (like that
WORK_STRUCT_WQ_DATA_MASK) using an enum type, which is all kinds of
confused.  The mask needs to be 'unsigned long', not some unspecified
enum type.

To make matters worse, the actual "mask and cast to a pointer" is
repeated a couple of times, and the cast isn't even always done to the
right pointer, but - as the error case above - to a 'void *' with then
the compiler finishing the job.

That's now how we roll in the kernel.

So create the masks using the proper types rather than some ambiguous
enumeration, and use a nice helper that actually does the type
conversion in one well-defined place.

Incidentally, this magically makes clang generate better code.  That,
admittedly, is really just a sign of clang having been seriously
confused before, and cleaning up the typing unconfuses the compiler too.

Reported-by: Dave Airlie <airlied@gmail.com>
Link: https://lore.kernel.org/lkml/CAPM=9twNnV4zMCvrPkw3H-ajZOH-01JVh_kDrxdPYQErz8ZTdA@mail.gmail.com/
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-23 12:08:14 -07:00
Zqiang
18c8ae8131 workqueue: Disable per-cpu CPU hog detection when wq_cpu_intensive_thresh_us is 0
If workqueue.cpu_intensive_thresh_us is set to 0, the detection mechanism
for CPU-hogging per-cpu work item will keep triggering spuriously:

  workqueue: process_srcu hogged CPU for >0us 4 times, consider switching to WQ_UNBOUND
  workqueue: gc_worker hogged CPU for >0us 4 times, consider switching to WQ_UNBOUND
  workqueue: gc_worker hogged CPU for >0us 8 times, consider switching to WQ_UNBOUND
  workqueue: wait_rcu_exp_gp hogged CPU for >0us 4 times, consider switching to WQ_UNBOUND
  workqueue: kfree_rcu_monitor hogged CPU for >0us 4 times, consider switching to WQ_UNBOUND
  workqueue: kfree_rcu_monitor hogged CPU for >0us 8 times, consider switching to WQ_UNBOUND
  workqueue: reg_todo hogged CPU for >0us 4 times, consider switching to WQ_UNBOUND

This commit therefore disables the CPU-hog detection mechanism when
workqueue.cpu_intensive_thresh_us is set to 0.

tj: Patch description updated and the condition check on
    cpu_intensive_thresh_us separated into a separate if statement for
    readability.

Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2023-05-25 10:46:53 -10:00
Zqiang
c8f6219be2 workqueue: Fix WARN_ON_ONCE() triggers in worker_enter_idle()
Currently, pool->nr_running can be modified from timer tick, that means the
timer tick can run nested inside a not-irq-protected section that's in the
process of modifying nr_running. Consider the following scenario:

CPU0
kworker/0:2 (events)
   worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
   ->pool->nr_running++;  (1)

   process_one_work()
   ->worker->current_func(work);
     ->schedule()
       ->wq_worker_sleeping()
         ->worker->sleeping = 1;
         ->pool->nr_running--;  (0)
           ....
       ->wq_worker_running()
               ....
               CPU0 by interrupt:
               wq_worker_tick()
               ->worker_set_flags(worker, WORKER_CPU_INTENSIVE);
                 ->pool->nr_running--;  (-1)
	         ->worker->flags |= WORKER_CPU_INTENSIVE;
               ....
         ->if (!(worker->flags & WORKER_NOT_RUNNING))
           ->pool->nr_running++;    (will not execute)
         ->worker->sleeping = 0;
         ....
    ->worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
      ->pool->nr_running++;  (0)
    ....
    worker_set_flags(worker, WORKER_PREP);
    ->pool->nr_running--;   (-1)
    ....
    worker_enter_idle()
    ->WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);

if the nr_workers is equal to nr_idle, due to the nr_running is not zero,
will trigger WARN_ON_ONCE().

[    2.460602] WARNING: CPU: 0 PID: 63 at kernel/workqueue.c:1999 worker_enter_idle+0xb2/0xc0
[    2.462163] Modules linked in:
[    2.463401] CPU: 0 PID: 63 Comm: kworker/0:2 Not tainted 6.4.0-rc2-next-20230519 #1
[    2.463771] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
[    2.465127] Workqueue:  0x0 (events)
[    2.465678] RIP: 0010:worker_enter_idle+0xb2/0xc0
...
[    2.472614] Call Trace:
[    2.473152]  <TASK>
[    2.474182]  worker_thread+0x71/0x430
[    2.474992]  ? _raw_spin_unlock_irqrestore+0x28/0x50
[    2.475263]  kthread+0x103/0x120
[    2.475493]  ? __pfx_worker_thread+0x10/0x10
[    2.476355]  ? __pfx_kthread+0x10/0x10
[    2.476635]  ret_from_fork+0x2c/0x50
[    2.477051]  </TASK>

This commit therefore add the check of worker->sleeping in wq_worker_tick(),
if the worker->sleeping is not zero, directly return.

tj: Updated comment and description.

Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Closes: https://qa-reports.linaro.org/lkft/linux-next-master/build/next-20230519/testrun/17078554/suite/boot/test/clang-nightly-lkftconfig/log
Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2023-05-24 11:57:26 -10:00
Tejun Heo
8a1dd1e547 workqueue: Track and monitor per-workqueue CPU time usage
Now that wq_worker_tick() is there, we can easily track the rough CPU time
consumption of each workqueue by charging the whole tick whenever a tick
hits an active workqueue. While not super accurate, it provides reasonable
visibility into the workqueues that consume a lot of CPU cycles.
wq_monitor.py is updated to report the per-workqueue CPU times.

v2: wq_monitor.py was using "cputime" as the key when outputting in json
    format. Use "cpu_time" instead for consistency with other fields.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-05-17 17:02:09 -10:00
Tejun Heo
6363845005 workqueue: Report work funcs that trigger automatic CPU_INTENSIVE mechanism
Workqueue now automatically marks per-cpu work items that hog CPU for too
long as CPU_INTENSIVE, which excludes them from concurrency management and
prevents stalling other concurrency-managed work items. If a work function
keeps running over the thershold, it likely needs to be switched to use an
unbound workqueue.

This patch adds a debug mechanism which tracks the work functions which
trigger the automatic CPU_INTENSIVE mechanism and report them using
pr_warn() with exponential backoff.

v3: Documentation update.

v2: Drop bouncing to kthread_worker for printing messages. It was to avoid
    introducing circular locking dependency through printk but not effective
    as it still had pool lock -> wci_lock -> printk -> pool lock loop. Let's
    just print directly using printk_deferred().

Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
2023-05-17 17:02:08 -10:00
Tejun Heo
616db8779b workqueue: Automatically mark CPU-hogging work items CPU_INTENSIVE
If a per-cpu work item hogs the CPU, it can prevent other work items from
starting through concurrency management. A per-cpu workqueue which intends
to host such CPU-hogging work items can choose to not participate in
concurrency management by setting %WQ_CPU_INTENSIVE; however, this can be
error-prone and difficult to debug when missed.

This patch adds an automatic CPU usage based detection. If a
concurrency-managed work item consumes more CPU time than the threshold
(10ms by default) continuously without intervening sleeps, wq_worker_tick()
which is called from scheduler_tick() will detect the condition and
automatically mark it CPU_INTENSIVE.

The mechanism isn't foolproof:

* Detection depends on tick hitting the work item. Getting preempted at the
  right timings may allow a violating work item to evade detection at least
  temporarily.

* nohz_full CPUs may not be running ticks and thus can fail detection.

* Even when detection is working, the 10ms detection delays can add up if
  many CPU-hogging work items are queued at the same time.

However, in vast majority of cases, this should be able to detect violations
reliably and provide reasonable protection with a small increase in code
complexity.

If some work items trigger this condition repeatedly, the bigger problem
likely is the CPU being saturated with such per-cpu work items and the
solution would be making them UNBOUND. The next patch will add a debug
mechanism to help spot such cases.

v4: Documentation for workqueue.cpu_intensive_thresh_us added to
    kernel-parameters.txt.

v3: Switch to use wq_worker_tick() instead of hooking into preemptions as
    suggested by Peter.

v2: Lai pointed out that wq_worker_stopping() also needs to be called from
    preemption and rtlock paths and an earlier patch was updated
    accordingly. This patch adds a comment describing the risk of infinte
    recursions and how they're avoided.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
2023-05-17 17:02:08 -10:00
Tejun Heo
bdf8b9bfc1 workqueue: Improve locking rule description for worker fields
* Some worker fields are modified only by the worker itself while holding
  pool->lock thus making them safe to read from self, IRQ context if the CPU
  is running the worker or while holding pool->lock. Add 'K' locking rule
  for them.

* worker->sleeping is currently marked "None" which isn't very descriptive.
  It's used only by the worker itself. Add 'S' locking rule for it.

A future patch will depend on the 'K' rule to access worker->current_* from
the scheduler ticks.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-05-17 17:02:08 -10:00
Tejun Heo
c54d5046a0 workqueue: Move worker_set/clr_flags() upwards
They are going to be used in wq_worker_stopping(). Move them upwards.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
2023-05-17 17:02:08 -10:00