mirror of
https://github.com/armbian/linux-cix.git
synced 2026-01-06 12:30:45 -08:00
aa40d5a43526cca9439a2b45fcfdcd016594dece
489 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
11ac3e87ce |
mm: cma: use pageblock_order as the single alignment
Now alloc_contig_range() works at pageblock granularity. Change CMA allocation, which uses alloc_contig_range(), to use pageblock_nr_pages alignment. Link: https://lkml.kernel.org/r/20220425143118.2850746-6-zi.yan@sent.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: David Hildenbrand <david@redhat.com> Cc: Eric Ren <renzhengeek@gmail.com> Cc: kernel test robot <lkp@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
a431dbbc54 |
mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
The gcc 12 compiler reports a "'mem_section' will never be NULL" warning
on the following code:
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
#ifdef CONFIG_SPARSEMEM_EXTREME
if (!mem_section)
return NULL;
#endif
if (!mem_section[SECTION_NR_TO_ROOT(nr)])
return NULL;
:
It happens with CONFIG_SPARSEMEM_EXTREME off. The mem_section definition
is
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section **mem_section;
#else
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
In the !CONFIG_SPARSEMEM_EXTREME case, mem_section is a static
2-dimensional array and so the check "!mem_section[SECTION_NR_TO_ROOT(nr)]"
doesn't make sense.
Fix this warning by moving the "!mem_section[SECTION_NR_TO_ROOT(nr)]"
check up inside the CONFIG_SPARSEMEM_EXTREME block and adding an
explicit NR_SECTION_ROOTS check to make sure that there is no
out-of-bound array access.
Link: https://lkml.kernel.org/r/20220331180246.2746210-1-longman@redhat.com
Fixes:
|
||
|
|
c574bbe917 |
NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
e39bb6be9f |
NUMA Balancing: add page promotion counter
Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13 With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are different. After commit |
||
|
|
7f37e49cbd |
mm/mmzone.h: remove unused macros
Remove pgdat_page_nr, nid_page_nr and NODE_MEM_MAP. They are unused now. Link: https://lkml.kernel.org/r/20220127093210.62293-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
1dd214b8f2 |
mm: page_alloc: avoid merging non-fallbackable pageblocks with others
This is done in addition to MIGRATE_ISOLATE pageblock merge avoidance. It prepares for the upcoming removal of the MAX_ORDER-1 alignment requirement for CMA and alloc_contig_range(). MIGRATE_HIGHATOMIC should not merge with other migratetypes like MIGRATE_ISOLATE and MIGRARTE_CMA[1], so this commit prevents that too. Remove MIGRATE_CMA and MIGRATE_ISOLATE from fallbacks list, since they are never used. [1] https://lore.kernel.org/linux-mm/20211130100853.GP3366@techsingularity.net/ Link: https://lkml.kernel.org/r/20220124175957.1261961-1-zi.yan@sent.com Signed-off-by: Zi Yan <ziy@nvidia.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
62b3107073 |
mm_zone: add function to check if managed dma zone exists
Patch series "Handle warning of allocation failure on DMA zone w/o managed pages", v4. **Problem observed: On x86_64, when crash is triggered and entering into kdump kernel, page allocation failure can always be seen. --------------------------------- DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations swapper/0: page allocation failure: order:5, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0 CPU: 0 PID: 1 Comm: swapper/0 Call Trace: dump_stack+0x7f/0xa1 warn_alloc.cold+0x72/0xd6 ...... __alloc_pages+0x24d/0x2c0 ...... dma_atomic_pool_init+0xdb/0x176 do_one_initcall+0x67/0x320 ? rcu_read_lock_sched_held+0x3f/0x80 kernel_init_freeable+0x290/0x2dc ? rest_init+0x24f/0x24f kernel_init+0xa/0x111 ret_from_fork+0x22/0x30 Mem-Info: ------------------------------------ ***Root cause: In the current kernel, it assumes that DMA zone must have managed pages and try to request pages if CONFIG_ZONE_DMA is enabled. While this is not always true. E.g in kdump kernel of x86_64, only low 1M is presented and locked down at very early stage of boot, so that this low 1M won't be added into buddy allocator to become managed pages of DMA zone. This exception will always cause page allocation failure if page is requested from DMA zone. ***Investigation: This failure happens since below commit merged into linus's tree. |
||
|
|
1b4e3f26f9 |
mm: vmscan: Reduce throttling due to a failure to make progress
Mike Galbraith, Alexey Avramov and Darrick Wong all reported similar problems due to reclaim throttling for excessive lengths of time. In Alexey's case, a memory hog that should go OOM quickly stalls for several minutes before stalling. In Mike and Darrick's cases, a small memcg environment stalled excessively even though the system had enough memory overall. Commit |
||
|
|
69392a403f |
mm/vmscan: throttle reclaim when no progress is being made
Memcg reclaim throttles on congestion if no reclaim progress is made. This makes little sense, it might be due to writeback or a host of other factors. For !memcg reclaim, it's messy. Direct reclaim primarily is throttled in the page allocator if it is failing to make progress. Kswapd throttles if too many pages are under writeback and marked for immediate reclaim. This patch explicitly throttles if reclaim is failing to make progress. [vbabka@suse.cz: Remove redundant code] Link: https://lkml.kernel.org/r/20211022144651.19914-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
d818fca1ca |
mm/vmscan: throttle reclaim and compaction when too may pages are isolated
Page reclaim throttles on congestion if too many parallel reclaim instances have isolated too many pages. This makes no sense, excessive parallelisation has nothing to do with writeback or congestion. This patch creates an additional workqueue to sleep on when too many pages are isolated. The throttled tasks are woken when the number of isolated pages is reduced or a timeout occurs. There may be some false positive wakeups for GFP_NOIO/GFP_NOFS callers but the tasks will throttle again if necessary. [shy828301@gmail.com: Wake up from compaction context] [vbabka@suse.cz: Account number of throttled tasks only for writeback] Link: https://lkml.kernel.org/r/20211022144651.19914-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
8cd7c588de |
mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5.
This series that removes all calls to congestion_wait in mm/ and deletes
wait_iff_congested. It's not a clever implementation but
congestion_wait has been broken for a long time [1].
Even if congestion throttling worked, it was never a great idea. While
excessive dirty/writeback pages at the tail of the LRU is one
possibility that reclaim may be slow, there is also the problem of too
many pages being isolated and reclaim failing for other reasons
(elevated references, too many pages isolated, excessive LRU contention
etc).
This series replaces the "congestion" throttling with 3 different types.
- If there are too many dirty/writeback pages, sleep until a timeout or
enough pages get cleaned
- If too many pages are isolated, sleep until enough isolated pages are
either reclaimed or put back on the LRU
- If no progress is being made, direct reclaim tasks sleep until
another task makes progress with acceptable efficiency.
This was initially tested with a mix of workloads that used to trigger
corner cases that no longer work. A new test case was created called
"stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly
created XFS filesystem. Note that it may be necessary to increase the
timeout of ssh if executing remotely as ssh itself can get throttled and
the connection may timeout.
stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4
to check the impact as the number of direct reclaimers increase. It has
four types of worker.
- One "anon latency" worker creates small mappings with mmap() and
times how long it takes to fault the mapping reading it 4K at a time
- X file writers which is fio randomly writing X files where the total
size of the files add up to the allowed dirty_ratio. fio is allowed
to run for a warmup period to allow some file-backed pages to
accumulate. The duration of the warmup is based on the best-case
linear write speed of the storage.
- Y file readers which is fio randomly reading small files
- Z anon memory hogs which continually map (100-dirty_ratio)% of memory
- Total estimated WSS = (100+dirty_ration) percentage of memory
X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4
The intent is to maximise the total WSS with a mix of file and anon
memory where some anonymous memory must be swapped and there is a high
likelihood of dirty/writeback pages reaching the end of the LRU.
The test can be configured to have no background readers to stress
dirty/writeback pages. The results below are based on having zero
readers.
The short summary of the results is that the series works and stalls
until some event occurs but the timeouts may need adjustment.
The test results are not broken down by patch as the series should be
treated as one block that replaces a broken throttling mechanism with a
working one.
Finally, three machines were tested but I'm reporting the worst set of
results. The other two machines had much better latencies for example.
First the results of the "anon latency" latency
stutterp
5.15.0-rc1 5.15.0-rc1
vanilla mm-reclaimcongest-v5r4
Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%)
Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%)
Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%)
Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%)
Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%)
Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%)
Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%)
Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%)
Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%)
Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%)
Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%)
Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%)
Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%)
Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%)
Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%)
Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%)
Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%)
Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%)
Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%)
Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%)
Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%)
Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%)
Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%)
Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%)
For most thread counts, the time to mmap() is unfortunately increased.
In earlier versions of the series, this was lower but a large number of
throttling events were reaching their timeout increasing the amount of
inefficient scanning of the LRU. There is no prioritisation of reclaim
tasks making progress based on each tasks rate of page allocation versus
progress of reclaim. The variance is also impacted for high worker
counts but in all cases, the differences in latency are not
statistically significant due to very large maximum outliers. Max-90
shows that 90% of the stalls are comparable but the Max results show the
massive outliers which are increased to to stalling.
It is expected that this will be very machine dependant. Due to the
test design, reclaim is difficult so allocations stall and there are
variances depending on whether THPs can be allocated or not. The amount
of memory will affect exactly how bad the corner cases are and how often
they trigger. The warmup period calculation is not ideal as it's based
on linear writes where as fio is randomly writing multiple files from
multiple tasks so the start state of the test is variable. For example,
these are the latencies on a single-socket machine that had more memory
Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%*
Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%*
Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%)
Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%)
Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%)
The overall system CPU usage and elapsed time is as follows
5.15.0-rc3 5.15.0-rc3
vanilla mm-reclaimcongest-v5r4
Duration User 6989.03 983.42
Duration System 7308.12 799.68
Duration Elapsed 2277.67 2092.98
The patches reduce system CPU usage by 89% as the vanilla kernel is rarely
stalling.
The high-level /proc/vmstats show
5.15.0-rc1 5.15.0-rc1
vanilla mm-reclaimcongest-v5r2
Ops Direct pages scanned 1056608451.00 503594991.00
Ops Kswapd pages scanned 109795048.00 147289810.00
Ops Kswapd pages reclaimed 63269243.00 31036005.00
Ops Direct pages reclaimed 10803973.00 6328887.00
Ops Kswapd efficiency % 57.62 21.07
Ops Kswapd velocity 48204.98 57572.86
Ops Direct efficiency % 1.02 1.26
Ops Direct velocity 463898.83 196845.97
Kswapd scanned less pages but the detailed pattern is different. The
vanilla kernel scans slowly over time where as the patches exhibits
burst patterns of scan activity. Direct reclaim scanning is reduced by
52% due to stalling.
The pattern for stealing pages is also slightly different. Both kernels
exhibit spikes but the vanilla kernel when reclaiming shows pages being
reclaimed over a period of time where as the patches tend to reclaim in
spikes. The difference is that vanilla is not throttling and instead
scanning constantly finding some pages over time where as the patched
kernel throttles and reclaims in spikes.
Ops Percentage direct scans 90.59 77.37
For direct reclaim, vanilla scanned 90.59% of pages where as with the
patches, 77.37% were direct reclaim due to throttling
Ops Page writes by reclaim 2613590.00 1687131.00
Page writes from reclaim context are reduced.
Ops Page writes anon 2932752.00 1917048.00
And there is less swapping.
Ops Page reclaim immediate 996248528.00 107664764.00
The number of pages encountered at the tail of the LRU tagged for
immediate reclaim but still dirty/writeback is reduced by 89%.
Ops Slabs scanned 164284.00 153608.00
Slab scan activity is similar.
ftrace was used to gather stall activity
Vanilla
-------
1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000
2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000
8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000
29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000
82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0
The fast majority of wait_iff_congested calls do not stall at all. What
is likely happening is that cond_resched() reschedules the task for a
short period when the BDI is not registering congestion (which it never
will in this test setup).
1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000
2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000
4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000
380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000
778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000
congestion_wait if called always exceeds the timeout as there is no
trigger to wake it up.
Bottom line: Vanilla will throttle but it's not effective.
Patch series
------------
Kswapd throttle activity was always due to scanning pages tagged for
immediate reclaim at the tail of the LRU
1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK
11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK
The majority of events did not stall or stalled for a short period.
Roughly 16% of stalls reached the timeout before expiry. For direct
reclaim, the number of times stalled for each reason were
6624 reason=VMSCAN_THROTTLE_ISOLATED
93246 reason=VMSCAN_THROTTLE_NOPROGRESS
96934 reason=VMSCAN_THROTTLE_WRITEBACK
The most common reason to stall was due to excessive pages tagged for
immediate reclaim at the tail of the LRU followed by a failure to make
forward. A relatively small number were due to too many pages isolated
from the LRU by parallel threads
For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was
9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED
12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED
83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED
6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED
Most did not stall at all. A small number reached the timeout.
For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over
the map
1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS
1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS
1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS
1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS
2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS
3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS
3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS
3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS
4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS
4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS
4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS
4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS
4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS
4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS
5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS
5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS
5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS
5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS
6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS
7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS
7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS
7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS
7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS
8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS
8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS
8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS
9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS
9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS
9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS
10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS
10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS
10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS
11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS
12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS
13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS
13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS
14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS
14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS
14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS
16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS
17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS
17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS
17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS
18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS
20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS
20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS
20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS
21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS
23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS
23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS
25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS
25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS
26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS
27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS
28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS
29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS
30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS
30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS
31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS
32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS
33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS
35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS
35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS
36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS
36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS
37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS
38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS
40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS
43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS
55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS
56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS
58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS
59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS
61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS
71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS
71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS
79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS
82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS
82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS
85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS
85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS
88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS
90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS
90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS
94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS
118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS
119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS
126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS
146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS
148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS
148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS
159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS
178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS
183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS
237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS
266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS
313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS
347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS
470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS
559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS
964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS
2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS
2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS
7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS
22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS
51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS
The full timeout is often hit but a large number also do not stall at
all. The remainder slept a little allowing other reclaim tasks to make
progress.
While this timeout could be further increased, it could also negatively
impact worst-case behaviour when there is no prioritisation of what task
should make progress.
For VMSCAN_THROTTLE_WRITEBACK, the breakdown was
1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK
2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK
3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK
5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK
5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK
6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK
11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK
12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK
16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK
24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK
28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK
30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK
30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK
32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK
42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK
77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK
99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK
137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK
190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK
7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK
The majority hit the timeout in direct reclaim context although a
sizable number did not stall at all. This is very different to kswapd
where only a tiny percentage of stalls due to writeback reached the
timeout.
Bottom line, the throttling appears to work and the wakeup events may
limit worst case stalls. There might be some grounds for adjusting
timeouts but it's likely futile as the worst-case scenarios depend on
the workload, memory size and the speed of the storage. A better
approach to improve the series further would be to prioritise tasks
based on their rate of allocation with the caveat that it may be very
expensive to track.
This patch (of 5):
Page reclaim throttles on wait_iff_congested under the following
conditions:
- kswapd is encountering pages under writeback and marked for immediate
reclaim implying that pages are cycling through the LRU faster than
pages can be cleaned.
- Direct reclaim will stall if all dirty pages are backed by congested
inodes.
wait_iff_congested is almost completely broken with few exceptions.
This patch adds a new node-based workqueue and tracks the number of
throttled tasks and pages written back since throttling started. If
enough pages belonging to the node are written back then the throttled
tasks will wake early. If not, the throttled tasks sleeps until the
timeout expires.
[neilb@suse.de: Uninterruptible sleep and simpler wakeups]
[hdanton@sina.com: Avoid race when reclaim starts]
[vbabka@suse.cz: vmstat irq-safe api, clarifications]
Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1]
Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: NeilBrown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Darrick J . Wong" <djwong@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
8ca1b5a498 |
mm/page_alloc: detect allocation forbidden by cpuset and bail out early
There was a report that starting an Ubuntu in docker while using cpuset
to bind it to movable nodes (a node only has movable zone, like a node
for hotplug or a Persistent Memory node in normal usage) will fail due
to memory allocation failure, and then OOM is involved and many other
innocent processes got killed.
It can be reproduced with command:
$ docker run -it --rm --cpuset-mems 4 ubuntu:latest bash -c "grep Mems_allowed /proc/self/status"
(where node 4 is a movable node)
runc:[2:INIT] invoked oom-killer: gfp_mask=0x500cc2(GFP_HIGHUSER|__GFP_ACCOUNT), order=0, oom_score_adj=0
CPU: 8 PID: 8291 Comm: runc:[2:INIT] Tainted: G W I E 5.8.2-0.g71b519a-default #1 openSUSE Tumbleweed (unreleased)
Hardware name: Dell Inc. PowerEdge R640/0PHYDR, BIOS 2.6.4 04/09/2020
Call Trace:
dump_stack+0x6b/0x88
dump_header+0x4a/0x1e2
oom_kill_process.cold+0xb/0x10
out_of_memory.part.0+0xaf/0x230
out_of_memory+0x3d/0x80
__alloc_pages_slowpath.constprop.0+0x954/0xa20
__alloc_pages_nodemask+0x2d3/0x300
pipe_write+0x322/0x590
new_sync_write+0x196/0x1b0
vfs_write+0x1c3/0x1f0
ksys_write+0xa7/0xe0
do_syscall_64+0x52/0xd0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Mem-Info:
active_anon:392832 inactive_anon:182 isolated_anon:0
active_file:68130 inactive_file:151527 isolated_file:0
unevictable:2701 dirty:0 writeback:7
slab_reclaimable:51418 slab_unreclaimable:116300
mapped:45825 shmem:735 pagetables:2540 bounce:0
free:159849484 free_pcp:73 free_cma:0
Node 4 active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB all_unreclaimable? no
Node 4 Movable free:130021408kB min:9140kB low:139160kB high:269180kB reserved_highatomic:0KB active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:130023424kB managed:130023424kB mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:292kB local_pcp:84kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0 0
Node 4 Movable: 1*4kB (M) 0*8kB 0*16kB 1*32kB (M) 0*64kB 0*128kB 1*256kB (M) 1*512kB (M) 1*1024kB (M) 0*2048kB 31743*4096kB (M) = 130021156kB
oom-kill:constraint=CONSTRAINT_CPUSET,nodemask=(null),cpuset=docker-9976a269caec812c134fa317f27487ee36e1129beba7278a463dd53e5fb9997b.scope,mems_allowed=4,global_oom,task_memcg=/system.slice/containerd.service,task=containerd,pid=4100,uid=0
Out of memory: Killed process 4100 (containerd) total-vm:4077036kB, anon-rss:51184kB, file-rss:26016kB, shmem-rss:0kB, UID:0 pgtables:676kB oom_score_adj:0
oom_reaper: reaped process 8248 (docker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 2054 (node_exporter), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 1452 (systemd-journal), now anon-rss:0kB, file-rss:8564kB, shmem-rss:4kB
oom_reaper: reaped process 2146 (munin-node), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 8291 (runc:[2:INIT]), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
The reason is that in this case, the target cpuset nodes only have
movable zone, while the creation of an OS in docker sometimes needs to
allocate memory in non-movable zones (dma/dma32/normal) like
GFP_HIGHUSER, and the cpuset limit forbids the allocation, then
out-of-memory killing is involved even when normal nodes and movable
nodes both have many free memory.
The OOM killer cannot help to resolve the situation as there is no
usable memory for the request in the cpuset scope. The only reasonable
measure to take is to fail the allocation right away and have the caller
to deal with it.
So add a check for cases like this in the slowpath of allocation, and
bail out early returning NULL for the allocation.
As page allocation is one of the hottest path in kernel, this check will
hurt all users with sane cpuset configuration, add a static branch check
and detect the abnormal config in cpuset memory binding setup so that
the extra check cost in page allocation is not paid by everyone.
[thanks to Micho Hocko and David Rientjes for suggesting not handling
it inside OOM code, adding cpuset check, refining comments]
Link: https://lkml.kernel.org/r/1632481657-68112-1-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
f1dc0db296 |
mm: use __pfn_to_section() instead of open coding it
It is defined in the same file just a few lines above. Link: https://lkml.kernel.org/r/4598487.Rc0NezkW7i@mobilepool36.emlix.com Signed-off-by: Rolf Eike Beer <eb@emlix.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
2d338201d5 |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
"147 patches, based on
|
||
|
|
4b09700244 |
mm: track present early pages per zone
Patch series "mm/memory_hotplug: "auto-movable" online policy and memory groups", v3.
I. Goal
The goal of this series is improving in-kernel auto-online support. It
tackles the fundamental problems that:
1) We can create zone imbalances when onlining all memory blindly to
ZONE_MOVABLE, in the worst case crashing the system. We have to know
upfront how much memory we are going to hotplug such that we can
safely enable auto-onlining of all hotplugged memory to ZONE_MOVABLE
via "online_movable". This is far from practical and only applicable in
limited setups -- like inside VMs under the RHV/oVirt hypervisor which
will never hotplug more than 3 times the boot memory (and the
limitation is only in place due to the Linux limitation).
2) We see more setups that implement dynamic VM resizing, hot(un)plugging
memory to resize VM memory. In these setups, we might hotplug a lot of
memory, but it might happen in various small steps in both directions
(e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...). virtio-mem is the
primary driver of this upstream right now, performing such dynamic
resizing NUMA-aware via multiple virtio-mem devices.
Onlining all hotplugged memory to ZONE_NORMAL means we basically have
no hotunplug guarantees. Onlining all to ZONE_MOVABLE means we can
easily run into zone imbalances when growing a VM. We want a mixture,
and we want as much memory as reasonable/configured in ZONE_MOVABLE.
Details regarding zone imbalances can be found at [1].
3) Memory devices consist of 1..X memory block devices, however, the
kernel doesn't really track the relationship. Consequently, also user
space has no idea. We want to make per-device decisions.
As one example, for memory hotunplug it doesn't make sense to use a
mixture of zones within a single DIMM: we want all MOVABLE if
possible, otherwise all !MOVABLE, because any !MOVABLE part will easily
block the whole DIMM from getting hotunplugged.
As another example, virtio-mem operates on individual units that span
1..X memory blocks. Similar to a DIMM, we want a unit to either be all
MOVABLE or !MOVABLE. A "unit" can be thought of like a DIMM, however,
all units of a virtio-mem device logically belong together and are
managed (added/removed) by a single driver. We want as much memory of
a virtio-mem device to be MOVABLE as possible.
4) We want memory onlining to be done right from the kernel while adding
memory, not triggered by user space via udev rules; for example, this
is reqired for fast memory hotplug for drivers that add individual
memory blocks, like virito-mem. We want a way to configure a policy in
the kernel and avoid implementing advanced policies in user space.
The auto-onlining support we have in the kernel is not sufficient. All we
have is a) online everything MOVABLE (online_movable) b) online everything
!MOVABLE (online_kernel) c) keep zones contiguous (online). This series
allows configuring c) to mean instead "online movable if possible
according to the coniguration, driven by a maximum MOVABLE:KERNEL ratio"
-- a new onlining policy.
II. Approach
This series does 3 things:
1) Introduces the "auto-movable" online policy that initially operates on
individual memory blocks only. It uses a maximum MOVABLE:KERNEL ratio
to make a decision whether a memory block will be onlined to
ZONE_MOVABLE or not. However, in the basic form, hotplugged KERNEL
memory does not allow for more MOVABLE memory (details in the
patches). CMA memory is treated like MOVABLE memory.
2) Introduces static (e.g., DIMM) and dynamic (e.g., virtio-mem) memory
groups and uses group information to make decisions in the
"auto-movable" online policy across memory blocks of a single memory
device (modeled as memory group). More details can be found in patch
#3 or in the DIMM example below.
3) Maximizes ZONE_MOVABLE memory within dynamic memory groups, by
allowing ZONE_NORMAL memory within a dynamic memory group to allow for
more ZONE_MOVABLE memory within the same memory group. The target use
case is dynamic VM resizing using virtio-mem. See the virtio-mem
example below.
I remember that the basic idea of using a ratio to implement a policy in
the kernel was once mentioned by Vitaly Kuznetsov, but I might be wrong (I
lost the pointer to that discussion).
For me, the main use case is using it along with virtio-mem (and DIMMs /
ppc64 dlpar where necessary) for dynamic resizing of VMs, increasing the
amount of memory we can hotunplug reliably again if we might eventually
hotplug a lot of memory to a VM.
III. Target Usage
The target usage will be:
1) Linux boots with "mhp_default_online_type=offline"
2) User space (e.g., systemd unit) configures memory onlining (according
to a config file and system properties), for example:
* Setting memory_hotplug.online_policy=auto-movable
* Setting memory_hotplug.auto_movable_ratio=301
* Setting memory_hotplug.auto_movable_numa_aware=true
3) User space enabled auto onlining via "echo online >
/sys/devices/system/memory/auto_online_blocks"
4) User space triggers manual onlining of all already-offline memory
blocks (go over offline memory blocks and set them to "online")
IV. Example
For DIMMs, hotplugging 4 GiB DIMMs to a 4 GiB VM with a configured ratio of
301% results in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-79: Movable (DIMM 0)
Memory block 80-111: Movable (DIMM 1)
Memory block 112-143: Movable (DIMM 2)
Memory block 144-275: Normal (DIMM 3)
Memory block 176-207: Normal (DIMM 4)
... all Normal
(-> hotplugged Normal memory does not allow for more Movable memory)
For virtio-mem, using a simple, single virtio-mem device with a 4 GiB VM
will result in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-143: Movable (virtio-mem, first 12 GiB)
Memory block 144: Normal (virtio-mem, next 128 MiB)
Memory block 145-147: Movable (virtio-mem, next 384 MiB)
Memory block 148: Normal (virtio-mem, next 128 MiB)
Memory block 149-151: Movable (virtio-mem, next 384 MiB)
... Normal/Movable mixture as above
(-> hotplugged Normal memory allows for more Movable memory within
the same device)
Which gives us maximum flexibility when dynamically growing/shrinking a
VM in smaller steps.
V. Doc Update
I'll update the memory-hotplug.rst documentation, once the overhaul [1] is
usptream. Until then, details can be found in patch #2.
VI. Future Work
1) Use memory groups for ppc64 dlpar
2) Being able to specify a portion of (early) kernel memory that will be
excluded from the ratio. Like "128 MiB globally/per node" are excluded.
This might be helpful when starting VMs with extremely small memory
footprint (e.g., 128 MiB) and hotplugging memory later -- not wanting
the first hotplugged units getting onlined to ZONE_MOVABLE. One
alternative would be a trigger to not consider ZONE_DMA memory
in the ratio. We'll have to see if this is really rrequired.
3) Indicate to user space that MOVABLE might be a bad idea -- especially
relevant when memory ballooning without support for balloon compaction
is active.
This patch (of 9):
For implementing a new memory onlining policy, which determines when to
online memory blocks to ZONE_MOVABLE semi-automatically, we need the
number of present early (boot) pages -- present pages excluding hotplugged
pages. Let's track these pages per zone.
Pass a page instead of the zone to adjust_present_page_count(), similar as
adjust_managed_page_count() and derive the zone from the page.
It's worth noting that a memory block to be offlined/onlined is either
completely "early" or "not early". add_memory() and friends can only add
complete memory blocks and we only online/offline complete (individual)
memory blocks.
Link: https://lkml.kernel.org/r/20210806124715.17090-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210806124715.17090-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
859a85ddf9 |
mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE
Patch series "mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE". After recent updates to freeing unused parts of the memory map, no architecture can have holes in the memory map within a pageblock. This makes pfn_valid_within() check and CONFIG_HOLES_IN_ZONE configuration option redundant. The first patch removes them both in a mechanical way and the second patch simplifies memory_hotplug::test_pages_in_a_zone() that had pfn_valid_within() surrounded by more logic than simple if. This patch (of 2): After recent changes in freeing of the unused parts of the memory map and rework of pfn_valid() in arm and arm64 there are no architectures that can have holes in the memory map within a pageblock and so nothing can enable CONFIG_HOLES_IN_ZONE which guards non trivial implementation of pfn_valid_within(). With that, pfn_valid_within() is always hardwired to 1 and can be completely removed. Remove calls to pfn_valid_within() and CONFIG_HOLES_IN_ZONE. Link: https://lkml.kernel.org/r/20210713080035.7464-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20210713080035.7464-2-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
65d759c8f9 |
mm: compaction: support triggering of proactive compaction by user
The proactive compaction[1] gets triggered for every 500msec and run compaction on the node for COMPACTION_HPAGE_ORDER (usually order-9) pages based on the value set to sysctl.compaction_proactiveness. Triggering the compaction for every 500msec in search of COMPACTION_HPAGE_ORDER pages is not needed for all applications, especially on the embedded system usecases which may have few MB's of RAM. Enabling the proactive compaction in its state will endup in running almost always on such systems. Other side, proactive compaction can still be very much useful for getting a set of higher order pages in some controllable manner(controlled by using the sysctl.compaction_proactiveness). So, on systems where enabling the proactive compaction always may proove not required, can trigger the same from user space on write to its sysctl interface. As an example, say app launcher decide to launch the memory heavy application which can be launched fast if it gets more higher order pages thus launcher can prepare the system in advance by triggering the proactive compaction from userspace. This triggering of proactive compaction is done on a write to sysctl.compaction_proactiveness by user. [1]https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=facdaa917c4d5a376d09d25865f5a863f906234a [akpm@linux-foundation.org: tweak vm.rst, per Mike] Link: https://lkml.kernel.org/r/1627653207-12317-1-git-send-email-charante@codeaurora.org Signed-off-by: Charan Teja Reddy <charante@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
01c8d337d1 |
mm/sparse: set SECTION_NID_SHIFT to 6
Currently SECTION_NID_SHIFT is set to 3, which is incorrect because bit 3
and 4 can be overlapped by sub-field for early NID, and can be
unexpectedly set on NUMA systems. There are a few non-critical issues
related to this:
- Having SECTION_TAINT_ZONE_DEVICE set for wrong sections forces
pfn_to_online_page() through the slow path, but doesn't actually break
the kernel.
- A kdump generation tool like makedumpfile uses this field to calculate
the physical address to read. So wrong bits can make the tool access to
wrong address and fail to create kdump. This can be avoided by the
tool, so it's not critical.
To fix it, set SECTION_NID_SHIFT to 6 which is the minimum number of
available bits of section flag field.
Link: https://lkml.kernel.org/r/20210707045548.810271-1-naoya.horiguchi@linux.dev
Fixes:
|
||
|
|
11e02d3729 |
mm: sparse: remove __section_nr() function
As the last users of __section_nr() are gone, let's remove unused function __section_nr(). Link: https://lkml.kernel.org/r/20210707150212.855-4-ohoono.kwon@samsung.com Signed-off-by: Ohhoon Kwon <ohoono.kwon@samsung.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
351de44fde |
mm/swap: make NODE_DATA an inline function on CONFIG_FLATMEM
make W=1 generates the following warning in mm/workingset.c for allnoconfig
mm/workingset.c: In function `unpack_shadow':
mm/workingset.c:201:15: warning: variable `nid' set but not used [-Wunused-but-set-variable]
int memcgid, nid;
^~~
On FLATMEM, NODE_DATA returns a global pglist_data without dereferencing
nid. Make the helper an inline function to suppress the warning, add type
checking and to apply any side-effects in the parameter list.
Link: https://lkml.kernel.org/r/20210520084809.8576-15-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
041711ce7c |
mm: fix spelling mistakes
Fix some spelling mistakes in comments: each having differents usage ==> each has a different usage statments ==> statements adresses ==> addresses aggresive ==> aggressive datas ==> data posion ==> poison higer ==> higher precisly ==> precisely wont ==> won't We moves tha ==> We move the endianess ==> endianness Link: https://lkml.kernel.org/r/20210519065853.7723-2-thunder.leizhen@huawei.com Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Reviewed-by: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
16c9afc776 |
arm64/mm: drop HAVE_ARCH_PFN_VALID
CONFIG_SPARSEMEM_VMEMMAP is now the only available memory model on arm64 platforms and free_unused_memmap() would just return without creating any holes in the memmap mapping. There is no need for any special handling in pfn_valid() and HAVE_ARCH_PFN_VALID can just be dropped. This also moves the pfn upper bits sanity check into generic pfn_valid(). Link: https://lkml.kernel.org/r/1621947349-25421-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
51c656aef6 |
include/linux/mmzone.h: add documentation for pfn_valid()
Patch series "arm64: drop pfn_valid_within() and simplify pfn_valid()", v4. These patches aim to remove CONFIG_HOLES_IN_ZONE and essentially hardwire pfn_valid_within() to 1. The idea is to mark NOMAP pages as reserved in the memory map and restore the intended semantics of pfn_valid() to designate availability of struct page for a pfn. With this the core mm will be able to cope with the fact that it cannot use NOMAP pages and the holes created by NOMAP ranges within MAX_ORDER blocks will be treated correctly even without the need for pfn_valid_within. This patch (of 4): Add comment describing the semantics of pfn_valid() that clarifies that pfn_valid() only checks for availability of a memory map entry (i.e. struct page) for a PFN rather than availability of usable memory backing that PFN. The most "generic" version of pfn_valid() used by the configurations with SPARSEMEM enabled resides in include/linux/mmzone.h so this is the most suitable place for documentation about semantics of pfn_valid(). Link: https://lkml.kernel.org/r/20210511100550.28178-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20210511100550.28178-2-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Suggested-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
|
44042b4498 |
mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
The per-cpu page allocator (PCP) only stores order-0 pages. This means
that all THP and "cheap" high-order allocations including SLUB contends on
the zone->lock. This patch extends the PCP allocator to store THP and
"cheap" high-order pages. Note that struct per_cpu_pages increases in
size to 256 bytes (4 cache lines) on x86-64.
Note that this is not necessarily a universal performance win because of
how it is implemented. High-order pages can cause pcp->high to be
exceeded prematurely for lower-orders so for example, a large number of
THP pages being freed could release order-0 pages from the PCP lists.
Hence, much depends on the allocation/free pattern as observed by a single
CPU to determine if caching helps or hurts a particular workload.
That said, basic performance testing passed. The following is a netperf
UDP_STREAM test which hits the relevant patches as some of the network
allocations are high-order.
netperf-udp
5.13.0-rc2 5.13.0-rc2
mm-pcpburst-v3r4 mm-pcphighorder-v1r7
Hmean send-64 261.46 ( 0.00%) 266.30 * 1.85%*
Hmean send-128 516.35 ( 0.00%) 536.78 * 3.96%*
Hmean send-256 1014.13 ( 0.00%) 1034.63 * 2.02%*
Hmean send-1024 3907.65 ( 0.00%) 4046.11 * 3.54%*
Hmean send-2048 7492.93 ( 0.00%) 7754.85 * 3.50%*
Hmean send-3312 11410.04 ( 0.00%) 11772.32 * 3.18%*
Hmean send-4096 13521.95 ( 0.00%) 13912.34 * 2.89%*
Hmean send-8192 21660.50 ( 0.00%) 22730.72 * 4.94%*
Hmean send-16384 31902.32 ( 0.00%) 32637.50 * 2.30%*
Functionally, a patch like this is necessary to make bulk allocation of
high-order pages work with similar performance to order-0 bulk
allocations. The bulk allocator is not updated in this series as it would
have to be determined by bulk allocation users how they want to track the
order of pages allocated with the bulk allocator.
Link: https://lkml.kernel.org/r/20210611135753.GC30378@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
||
|
|
43b02ba93b |
mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
After removal of the DISCONTIGMEM memory model the FLAT_NODE_MEM_MAP configuration option is equivalent to FLATMEM. Drop CONFIG_FLAT_NODE_MEM_MAP and use CONFIG_FLATMEM instead. Link: https://lkml.kernel.org/r/20210608091316.3622-10-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matt Turner <mattst88@gmail.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |