The field is used to keep track of the consecutive (on the same CPU) calls
of a single function. This information is needed in order to consolidate
the function tracing record in the cases when a single function is called
number of times.
Link: https://lkml.kernel.org/r/20210415181854.147448-4-y.karadz@gmail.com
Signed-off-by: Yordan Karadzhov (VMware) <y.karadz@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The event aims to consolidate the function tracing record in the cases
when a single function is called number of times consecutively.
while (cond)
do_func();
This may happen in various scenarios (busy waiting for example).
The new ftrace event can be used to show repeated function events with
a single event and save space on the ring buffer
Link: https://lkml.kernel.org/r/20210415181854.147448-3-y.karadz@gmail.com
Signed-off-by: Yordan Karadzhov (VMware) <y.karadz@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
It is a common mistake for someone writing a trace event to save a pointer
to a string in the TP_fast_assign() and then display that string pointer
in the TP_printk() with %s. The problem is that those two events may happen
a long time apart, where the source of the string may no longer exist.
The proper way to handle displaying any string that is not guaranteed to be
in the kernel core rodata section, is to copy it into the ring buffer via
the __string(), __assign_str() and __get_str() helper macros.
Add a check at run time while displaying the TP_printk() of events to make
sure that every %s referenced is safe to dereference, and if it is not,
trigger a warning and only show the address of the pointer, and the
dereferenced string if it can be safely retrieved with a
strncpy_from_kernel_nofault() call.
In order to not have to copy the parsing of vsnprintf() formats, or even
exporting its code, the verifier relies on vsnprintf() being able to
modify the va_list that is passed to it, and it remains modified after it
is called. This is the case for some architectures like x86_64, but other
architectures like x86_32 pass the va_list to vsnprintf() as a value not a
reference, and the verifier can not use it to parse the non string
arguments. Thus, at boot up, it is checked if vsnprintf() modifies the
passed in va_list or not, and a static branch will disable the verifier if
it's not compatible.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Add a tracing_event_time_stamp() API that checks if the event passed in is
not on the ring buffer but a pointer to the per CPU trace_buffered_event
which does not have its time stamp set yet.
If it is a pointer to the trace_buffered_event, then just return the
current time stamp that the ring buffer would produce.
Otherwise, return the time stamp from the event.
Link: https://lkml.kernel.org/r/20210316164114.131996180@goodmis.org
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Currently, the trace histograms relies on it using absolute time stamps to
trigger the tracing to not use the temp buffer if filters are set. That's
because the histograms need the full timestamp that is saved in the ring
buffer. That is no longer the case, as the ring_buffer_event_time_stamp()
can now return the time stamp for all events without all triggering a full
absolute time stamp.
Now that the absolute time stamp is an unrelated dependency to not using
the filters. There's nothing about having absolute timestamps to keep from
using the filter buffer. Instead, change the interface to explicitly state
to disable filter buffering that the histogram logic can use.
Link: https://lkml.kernel.org/r/20210316164113.847886563@goodmis.org
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The ring_buffer_event_time_stamp() is going to be updated to extract the
time stamp for the event without needing it to be set to have absolute
values for all events. But to do so, it needs the buffer that the event is
on as the buffer saves information for the event before it is committed to
the buffer.
If the trace buffer is disabled, a temporary buffer is used, and there's
no access to this buffer from the current histogram triggers, even though
it is passed to the trace event code.
Pass the buffer that the event is on all the way down to the histogram
triggers.
Link: https://lkml.kernel.org/r/20210316164113.542448131@goodmis.org
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Add tracefs/options/hash-ptr option to show hashed pointer
value by %p in event printk format string.
For the security reason, normal printk will show the hashed
pointer value (encrypted by random number) with %p to printk
buffer to hide the real address. But the tracefs/trace always
shows real address for debug. To bridge those outputs, add an
option to switch the output format. Ftrace users can use it
to find the hashed value corresponding to the real address
in trace log.
Link: https://lkml.kernel.org/r/160277372504.29307.14909828808982012211.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
To help debugging kernel, show real address for trace event arguments
in tracefs/trace{,pipe} instead of hashed pointer value.
Since ftrace human-readable format uses vsprintf(), all %p are
translated to hash values instead of pointer address.
However, when debugging the kernel, raw address value gives a
hint when comparing with the memory mapping in the kernel.
(Those are sometimes used with crash log, which is not hashed too)
So converting %p with %px when calling trace_seq_printf().
Moreover, this is not improving the security because the tracefs
can be used only by root user and the raw address values are readable
from tracefs/percpu/cpu*/trace_pipe_raw file.
Link: https://lkml.kernel.org/r/160277370703.29307.5134475491761971203.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Delegate command parsing to each create function so that the
command syntax can be customized.
This requires changes to the kprobe/uprobe/synthetic event handling,
which are also included here.
Link: https://lkml.kernel.org/r/e488726f49cbdbc01568618f8680584306c4c79f.1612208610.git.zanussi@kernel.org
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
[ zanussi@kernel.org: added synthetic event modifications ]
Signed-off-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The state of the interrupts (irqflags) and the preemption counter are
both passed down to tracing_generic_entry_update(). Only one bit of
irqflags is actually required: The on/off state. The complete 32bit
of the preemption counter isn't needed. Just whether of the upper bits
(softirq, hardirq and NMI) are set and the preemption depth is needed.
The irqflags and the preemption counter could be evaluated early and the
information stored in an integer `trace_ctx'.
tracing_generic_entry_update() would use the upper bits as the
TRACE_FLAG_* and the lower 8bit as the disabled-preemption depth
(considering that one must be substracted from the counter in one
special cases).
The actual preemption value is not used except for the tracing record.
The `irqflags' variable is mostly used only for the tracing record. An
exception here is for instance wakeup_tracer_call() or
probe_wakeup_sched_switch() which explicilty disable interrupts and use
that `irqflags' to save (and restore) the IRQ state and to record the
state.
Struct trace_event_buffer has also the `pc' and flags' members which can
be replaced with `trace_ctx' since their actual value is not used
outside of trace recording.
This will reduce tracing_generic_entry_update() to simply assign values
to struct trace_entry. The evaluation of the TRACE_FLAG_* bits is moved
to _tracing_gen_ctx_flags() which replaces preempt_count() and
local_save_flags() invocations.
As an example, ftrace_syscall_enter() may invoke:
- trace_buffer_lock_reserve() -> … -> tracing_generic_entry_update()
- event_trigger_unlock_commit()
-> ftrace_trace_stack() -> … -> tracing_generic_entry_update()
-> ftrace_trace_userstack() -> … -> tracing_generic_entry_update()
In this case the TRACE_FLAG_* bits were evaluated three times. By using
the `trace_ctx' they are evaluated once and assigned three times.
A build with all tracers enabled on x86-64 with and without the patch:
text data bss dec hex filename
21970669 17084168 7639260 46694097 2c87ed1 vmlinux.old
21970293 17084168 7639260 46693721 2c87d59 vmlinux.new
text shrank by 379 bytes, data remained constant.
Link: https://lkml.kernel.org/r/20210125194511.3924915-2-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Currently, if a callback is registered to a ftrace function and its
ftrace_ops does not have the RECURSION flag set, it is encapsulated in a
helper function that does the recursion for it.
Really, all the callbacks should have their own recursion protection for
performance reasons. But they should not all implement their own. Move the
recursion helpers to global headers, so that all callbacks can use them.
Link: https://lkml.kernel.org/r/20201028115612.460535535@goodmis.org
Link: https://lkml.kernel.org/r/20201106023546.166456258@goodmis.org
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When an interrupt or NMI comes in and switches the context, there's a delay
from when the preempt_count() shows the update. As the preempt_count() is
used to detect recursion having each context have its own bit get set when
tracing starts, and if that bit is already set, it is considered a recursion
and the function exits. But if this happens in that section where context
has changed but preempt_count() has not been updated, this will be
incorrectly flagged as a recursion.
To handle this case, create another bit call TRANSITION and test it if the
current context bit is already set. Flag the call as a recursion if the
TRANSITION bit is already set, and if not, set it and continue. The
TRANSITION bit will be cleared normally on the return of the function that
set it, or if the current context bit is clear, set it and clear the
TRANSITION bit to allow for another transition between the current context
and an even higher one.
Cc: stable@vger.kernel.org
Fixes: edc15cafcb ("tracing: Avoid unnecessary multiple recursion checks")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The code that checks recursion will work to only do the recursion check once
if there's nested checks. The top one will do the check, the other nested
checks will see recursion was already checked and return zero for its "bit".
On the return side, nothing will be done if the "bit" is zero.
The problem is that zero is returned for the "good" bit when in NMI context.
This will set the bit for NMIs making it look like *all* NMI tracing is
recursing, and prevent tracing of anything in NMI context!
The simple fix is to return "bit + 1" and subtract that bit on the end to
get the real bit.
Cc: stable@vger.kernel.org
Fixes: edc15cafcb ("tracing: Avoid unnecessary multiple recursion checks")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
I was attempting to use pid filtering with function_graph, but it wasn't
allowing anything to make it through. Turns out ftrace_trace_task
returns false if ftrace_ignore_pid is not-empty, which isn't correct
anymore. We're now setting it to FTRACE_PID_IGNORE if we need to ignore
that pid, otherwise it's set to the pid (which is weird considering the
name) or to FTRACE_PID_TRACE. Fix the check to check for !=
FTRACE_PID_IGNORE. With this we can now use function_graph with pid
filtering.
Link: https://lkml.kernel.org/r/20200725005048.1790-1-josef@toxicpanda.com
Fixes: 717e3f5ebc ("ftrace: Make function trace pid filtering a bit more exact")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>