Commit Graph

48 Commits

Author SHA1 Message Date
Eric W. Biederman
5bd2e97c86 fork: Generalize PF_IO_WORKER handling
Add fn and fn_arg members into struct kernel_clone_args and test for
them in copy_thread (instead of testing for PF_KTHREAD | PF_IO_WORKER).
This allows any task that wants to be a user space task that only runs
in kernel mode to use this functionality.

The code on x86 is an exception and still retains a PF_KTHREAD test
because x86 unlikely everything else handles kthreads slightly
differently than user space tasks that start with a function.

The functions that created tasks that start with a function
have been updated to set ".fn" and ".fn_arg" instead of
".stack" and ".stack_size".  These functions are fork_idle(),
create_io_thread(), kernel_thread(), and user_mode_thread().

Link: https://lkml.kernel.org/r/20220506141512.516114-4-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-07 09:01:59 -05:00
Eric W. Biederman
36cb0e1cda fork: Explicity test for idle tasks in copy_thread
The architectures ia64 and parisc have special handling for the idle
thread in copy_process.  Add a flag named idle to kernel_clone_args
and use it to explicity test if an idle process is being created.

Fullfill the expectations of the rest of the copy_thread
implemetations and pass a function pointer in .stack from fork_idle().
This makes what is happening in copy_thread better defined, and is
useful to make idle threads less special.

Link: https://lkml.kernel.org/r/20220506141512.516114-3-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-07 09:01:59 -05:00
Eric W. Biederman
c5febea095 fork: Pass struct kernel_clone_args into copy_thread
With io_uring we have started supporting tasks that are for most
purposes user space tasks that exclusively run code in kernel mode.

The kernel task that exec's init and tasks that exec user mode
helpers are also user mode tasks that just run kernel code
until they call kernel execve.

Pass kernel_clone_args into copy_thread so these oddball
tasks can be supported more cleanly and easily.

v2: Fix spelling of kenrel_clone_args on h8300
Link: https://lkml.kernel.org/r/20220506141512.516114-2-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-07 09:01:48 -05:00
Eric W. Biederman
343f4c49f2 kthread: Don't allocate kthread_struct for init and umh
If kthread_is_per_cpu runs concurrently with free_kthread_struct the
kthread_struct that was just freed may be read from.

This bug was introduced by commit 40966e316f ("kthread: Ensure
struct kthread is present for all kthreads").  When kthread_struct
started to be allocated for all tasks that have PF_KTHREAD set.  This
in turn required the kthread_struct to be freed in kernel_execve and
violated the assumption that kthread_struct will have the same
lifetime as the task.

Looking a bit deeper this only applies to callers of kernel_execve
which is just the init process and the user mode helper processes.
These processes really don't want to be kernel threads but are for
historical reasons.  Mostly that copy_thread does not know how to take
a kernel mode function to the process with for processes without
PF_KTHREAD or PF_IO_WORKER set.

Solve this by not allocating kthread_struct for the init process and
the user mode helper processes.

This is done by adding a kthread member to struct kernel_clone_args.
Setting kthread in fork_idle and kernel_thread.  Adding
user_mode_thread that works like kernel_thread except it does not set
kthread.  In fork only allocating the kthread_struct if .kthread is set.

I have looked at kernel/kthread.c and since commit 40966e316f
("kthread: Ensure struct kthread is present for all kthreads") there
have been no assumptions added that to_kthread or __to_kthread will
not return NULL.

There are a few callers of to_kthread or __to_kthread that assume a
non-NULL struct kthread pointer will be returned.  These functions are
kthread_data(), kthread_parmme(), kthread_exit(), kthread(),
kthread_park(), kthread_unpark(), kthread_stop().  All of those functions
can reasonably expected to be called when it is know that a task is a
kthread so that assumption seems reasonable.

Cc: stable@vger.kernel.org
Fixes: 40966e316f ("kthread: Ensure struct kthread is present for all kthreads")
Reported-by: Максим Кутявин <maximkabox13@gmail.com>
Link: https://lkml.kernel.org/r/20220506141512.516114-1-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-06 14:49:44 -05:00
Peter Zijlstra
eae654f1c2 exit: Mark do_group_exit() __noreturn
vmlinux.o: warning: objtool: get_signal()+0x108: unreachable instruction

0000 000000000007f930 <get_signal>:
...
0103    7fa33:  e8 00 00 00 00          call   7fa38 <get_signal+0x108> 7fa34: R_X86_64_PLT32   do_group_exit-0x4
0108    7fa38:  41 8b 45 74             mov    0x74(%r13),%eax

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154319.351270711@infradead.org
2022-03-15 10:32:43 +01:00
Peter Zijlstra
b1e8206582 sched: Fix yet more sched_fork() races
Where commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.

Commit 13765de814 ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit.

Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/YgoeCbwj5mbCR0qA@hirez.programming.kicks-ass.net
2022-02-19 11:11:05 +01:00
Linus Torvalds
35ce8ae9ae Merge branch 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull signal/exit/ptrace updates from Eric Biederman:
 "This set of changes deletes some dead code, makes a lot of cleanups
  which hopefully make the code easier to follow, and fixes bugs found
  along the way.

  The end-game which I have not yet reached yet is for fatal signals
  that generate coredumps to be short-circuit deliverable from
  complete_signal, for force_siginfo_to_task not to require changing
  userspace configured signal delivery state, and for the ptrace stops
  to always happen in locations where we can guarantee on all
  architectures that the all of the registers are saved and available on
  the stack.

  Removal of profile_task_ext, profile_munmap, and profile_handoff_task
  are the big successes for dead code removal this round.

  A bunch of small bug fixes are included, as most of the issues
  reported were small enough that they would not affect bisection so I
  simply added the fixes and did not fold the fixes into the changes
  they were fixing.

  There was a bug that broke coredumps piped to systemd-coredump. I
  dropped the change that caused that bug and replaced it entirely with
  something much more restrained. Unfortunately that required some
  rebasing.

  Some successes after this set of changes: There are few enough calls
  to do_exit to audit in a reasonable amount of time. The lifetime of
  struct kthread now matches the lifetime of struct task, and the
  pointer to struct kthread is no longer stored in set_child_tid. The
  flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
  removed. Issues where task->exit_code was examined with
  signal->group_exit_code should been examined were fixed.

  There are several loosely related changes included because I am
  cleaning up and if I don't include them they will probably get lost.

  The original postings of these changes can be found at:
     https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org

  I trimmed back the last set of changes to only the obviously correct
  once. Simply because there was less time for review than I had hoped"

* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
  ptrace/m68k: Stop open coding ptrace_report_syscall
  ptrace: Remove unused regs argument from ptrace_report_syscall
  ptrace: Remove second setting of PT_SEIZED in ptrace_attach
  taskstats: Cleanup the use of task->exit_code
  exit: Use the correct exit_code in /proc/<pid>/stat
  exit: Fix the exit_code for wait_task_zombie
  exit: Coredumps reach do_group_exit
  exit: Remove profile_handoff_task
  exit: Remove profile_task_exit & profile_munmap
  signal: clean up kernel-doc comments
  signal: Remove the helper signal_group_exit
  signal: Rename group_exit_task group_exec_task
  coredump: Stop setting signal->group_exit_task
  signal: Remove SIGNAL_GROUP_COREDUMP
  signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
  signal: Make coredump handling explicit in complete_signal
  signal: Have prepare_signal detect coredumps using signal->core_state
  signal: Have the oom killer detect coredumps using signal->core_state
  exit: Move force_uaccess back into do_exit
  exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
  ...
2022-01-17 05:49:30 +02:00
Eric W. Biederman
0e25498f8c exit: Add and use make_task_dead.
There are two big uses of do_exit.  The first is it's design use to be
the guts of the exit(2) system call.  The second use is to terminate
a task after something catastrophic has happened like a NULL pointer
in kernel code.

Add a function make_task_dead that is initialy exactly the same as
do_exit to cover the cases where do_exit is called to handle
catastrophic failure.  In time this can probably be reduced to just a
light wrapper around do_task_dead. For now keep it exactly the same so
that there will be no behavioral differences introducing this new
concept.

Replace all of the uses of do_exit that use it for catastraphic
task cleanup with make_task_dead to make it clear what the code
is doing.

As part of this rename rewind_stack_do_exit
rewind_stack_and_make_dead.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-12-13 12:04:45 -06:00
Alexander Mikhalitsyn
85b6d24646 shm: extend forced shm destroy to support objects from several IPC nses
Currently, the exit_shm() function not designed to work properly when
task->sysvshm.shm_clist holds shm objects from different IPC namespaces.

This is a real pain when sysctl kernel.shm_rmid_forced = 1, because it
leads to use-after-free (reproducer exists).

This is an attempt to fix the problem by extending exit_shm mechanism to
handle shm's destroy from several IPC ns'es.

To achieve that we do several things:

1. add a namespace (non-refcounted) pointer to the struct shmid_kernel

2. during new shm object creation (newseg()/shmget syscall) we
   initialize this pointer by current task IPC ns

3. exit_shm() fully reworked such that it traverses over all shp's in
   task->sysvshm.shm_clist and gets IPC namespace not from current task
   as it was before but from shp's object itself, then call
   shm_destroy(shp, ns).

Note: We need to be really careful here, because as it was said before
(1), our pointer to IPC ns non-refcnt'ed.  To be on the safe side we
using special helper get_ipc_ns_not_zero() which allows to get IPC ns
refcounter only if IPC ns not in the "state of destruction".

Q/A

Q: Why can we access shp->ns memory using non-refcounted pointer?
A: Because shp object lifetime is always shorther than IPC namespace
   lifetime, so, if we get shp object from the task->sysvshm.shm_clist
   while holding task_lock(task) nobody can steal our namespace.

Q: Does this patch change semantics of unshare/setns/clone syscalls?
A: No. It's just fixes non-covered case when process may leave IPC
   namespace without getting task->sysvshm.shm_clist list cleaned up.

Link: https://lkml.kernel.org/r/67bb03e5-f79c-1815-e2bf-949c67047418@colorfullife.com
Link: https://lkml.kernel.org/r/20211109151501.4921-1-manfred@colorfullife.com
Fixes: ab602f7991 ("shm: make exit_shm work proportional to task activity")
Co-developed-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Alexander Mikhalitsyn <alexander.mikhalitsyn@virtuozzo.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-20 10:35:54 -08:00
Zhang Qiao
4ef0c5c6b5 kernel/sched: Fix sched_fork() access an invalid sched_task_group
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.

	parent doing fork()      | someone moving the parent
				 | to another cgroup
  -------------------------------+-------------------------------
  copy_process()
      + dup_task_struct()<1>
				  parent move to another cgroup,
				  and free the old cgroup. <2>
      + sched_fork()
	+ __set_task_cpu()<3>
	+ task_fork_fair()
	  + sched_slice()<4>

In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:

  (1) parent copy its sched_task_group to child at <1>;

  (2) someone move the parent to another cgroup and free the old
      cgroup at <2>;

  (3) the sched_task_group and cfs_rq that belong to the old cgroup
      will be accessed at <3> and <4>, which cause a panic:

  [] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
  [] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
  [] Oops: 0000 [#1] SMP PTI
  [] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G           OE    --------- -  - 4.18.0.x86_64+ #1
  [] RIP: 0010:sched_slice+0x84/0xc0

  [] Call Trace:
  []  task_fork_fair+0x81/0x120
  []  sched_fork+0x132/0x240
  []  copy_process.part.5+0x675/0x20e0
  []  ? __handle_mm_fault+0x63f/0x690
  []  _do_fork+0xcd/0x3b0
  []  do_syscall_64+0x5d/0x1d0
  []  entry_SYSCALL_64_after_hwframe+0x65/0xca
  [] RIP: 0033:0x7f04418cd7e1

Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().

Fixes: 8323f26ce3 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
2021-10-14 13:09:58 +02:00
Jens Axboe
cc440e8738 kernel: provide create_io_thread() helper
Provide a generic helper for setting up an io_uring worker. Returns a
task_struct so that the caller can do whatever setup is needed, then call
wake_up_new_task() to kick it into gear.

Add a kernel_clone_args member, io_thread, which tells copy_process() to
mark the task with PF_IO_WORKER.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-04 15:45:03 -07:00
Jakub Kicinski
9f14cb030d sched: Un-hide lockdep_tasklist_lock_is_held() for !LOCKDEP
Currently, variables used only within lockdep expressions are flagged as
unused, requiring that these variables' declarations be decorated with
either #ifdef or __maybe_unused.  This results in ugly code.  This commit
therefore causes the lockdep_tasklist_lock_is_held() function to be
visible even when lockdep is not enabled, thus removing the need for
these decorations.  This approach further relies on dead-code elimination
to remove any references to functions or variables that are not available
in non-lockdep kernels.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-11-02 17:09:59 -08:00
Christian Brauner
06fe456349 sched: remove _do_fork()
Now that all callers of _do_fork() have been switched to kernel_clone() remove
the _do_fork() helper.

Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/20200819104655.436656-12-christian.brauner@ubuntu.com
2020-08-20 13:12:59 +02:00
Christian Brauner
cad6967ac1 fork: introduce kernel_clone()
The old _do_fork() helper doesn't follow naming conventions of in-kernel
helpers for syscalls. The process creation cleanup in [1] didn't change the
name to something more reasonable mainly because _do_fork() was used in quite a
few places. So sending this as a separate series seemed the better strategy.

This commit does two things:
1. renames _do_fork() to kernel_clone() but keeps _do_fork() as a simple static
   inline wrapper around kernel_clone().
2. Changes the return type from long to pid_t. This aligns kernel_thread() and
   kernel_clone(). Also, the return value from kernel_clone that is surfaced in
   fork(), vfork(), clone(), and clone3() is taken from pid_vrn() which returns
   a pid_t too.

Follow-up patches will switch each caller of _do_fork() and each place where it
is referenced over to kernel_clone(). After all these changes are done, we can
remove _do_fork() completely and will only be left with kernel_clone().

[1]: 9ba27414f2 ("Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux")

Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200819104655.436656-2-christian.brauner@ubuntu.com
2020-08-20 13:12:57 +02:00
Christoph Hellwig
8043fc147a kernel: add a kernel_wait helper
Add a helper that waits for a pid and stores the status in the passed in
kernel pointer.  Use it to fix the usage of kernel_wait4 in
call_usermodehelper_exec_sync that only happens to work due to the
implicit set_fs(KERNEL_DS) for kernel threads.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Link: http://lkml.kernel.org/r/20200721130449.5008-1-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:59 -07:00
Linus Torvalds
9ba27414f2 Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull fork cleanups from Christian Brauner:
 "This is cleanup series from when we reworked a chunk of the process
  creation paths in the kernel and switched to struct
  {kernel_}clone_args.

  High-level this does two main things:

   - Remove the double export of both do_fork() and _do_fork() where
     do_fork() used the incosistent legacy clone calling convention.

     Now we only export _do_fork() which is based on struct
     kernel_clone_args.

   - Remove the copy_thread_tls()/copy_thread() split making the
     architecture specific HAVE_COYP_THREAD_TLS config option obsolete.

  This switches all remaining architectures to select
  HAVE_COPY_THREAD_TLS and thus to the copy_thread_tls() calling
  convention. The current split makes the process creation codepaths
  more convoluted than they need to be. Each architecture has their own
  copy_thread() function unless it selects HAVE_COPY_THREAD_TLS then it
  has a copy_thread_tls() function.

  The split is not needed anymore nowadays, all architectures support
  CLONE_SETTLS but quite a few of them never bothered to select
  HAVE_COPY_THREAD_TLS and instead simply continued to use copy_thread()
  and use the old calling convention. Removing this split cleans up the
  process creation codepaths and paves the way for implementing clone3()
  on such architectures since it requires the copy_thread_tls() calling
  convention.

  After having made each architectures support copy_thread_tls() this
  series simply renames that function back to copy_thread(). It also
  switches all architectures that call do_fork() directly over to
  _do_fork() and the struct kernel_clone_args calling convention. This
  is a corollary of switching the architectures that did not yet support
  it over to copy_thread_tls() since do_fork() is conditional on not
  supporting copy_thread_tls() (Mostly because it lacks a separate
  argument for tls which is trivial to fix but there's no need for this
  function to exist.).

  The do_fork() removal is in itself already useful as it allows to to
  remove the export of both do_fork() and _do_fork() we currently have
  in favor of only _do_fork(). This has already been discussed back when
  we added clone3(). The legacy clone() calling convention is - as is
  probably well-known - somewhat odd:

    #
    # ABI hall of shame
    #
    config CLONE_BACKWARDS
    config CLONE_BACKWARDS2
    config CLONE_BACKWARDS3

  that is aggravated by the fact that some architectures such as sparc
  follow the CLONE_BACKWARDSx calling convention but don't really select
  the corresponding config option since they call do_fork() directly.

  So do_fork() enforces a somewhat arbitrary calling convention in the
  first place that doesn't really help the individual architectures that
  deviate from it. They can thus simply be switched to _do_fork()
  enforcing a single calling convention. (I really hope that any new
  architectures will __not__ try to implement their own calling
  conventions...)

  Most architectures already have made a similar switch (m68k comes to
  mind).

  Overall this removes more code than it adds even with a good portion
  of added comments. It simplifies a chunk of arch specific assembly
  either by moving the code into C or by simply rewriting the assembly.

  Architectures that have been touched in non-trivial ways have all been
  actually boot and stress tested: sparc and ia64 have been tested with
  Debian 9 images. They are the two architectures which have been
  touched the most. All non-trivial changes to architectures have seen
  acks from the relevant maintainers. nios2 with a custom built
  buildroot image. h8300 I couldn't get something bootable to test on
  but the changes have been fairly automatic and I'm sure we'll hear
  people yell if I broke something there.

  All other architectures that have been touched in trivial ways have
  been compile tested for each single patch of the series via git rebase
  -x "make ..." v5.8-rc2. arm{64} and x86{_64} have been boot tested
  even though they have just been trivially touched (removal of the
  HAVE_COPY_THREAD_TLS macro from their Kconfig) because well they are
  basically "core architectures" and since it is trivial to get your
  hands on a useable image"

* tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  arch: rename copy_thread_tls() back to copy_thread()
  arch: remove HAVE_COPY_THREAD_TLS
  unicore: switch to copy_thread_tls()
  sh: switch to copy_thread_tls()
  nds32: switch to copy_thread_tls()
  microblaze: switch to copy_thread_tls()
  hexagon: switch to copy_thread_tls()
  c6x: switch to copy_thread_tls()
  alpha: switch to copy_thread_tls()
  fork: remove do_fork()
  h8300: select HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
  nios2: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
  ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
  sparc: unconditionally enable HAVE_COPY_THREAD_TLS
  sparc: share process creation helpers between sparc and sparc64
  sparc64: enable HAVE_COPY_THREAD_TLS
  fork: fold legacy_clone_args_valid() into _do_fork()
2020-08-04 14:47:45 -07:00
Linus Torvalds
e4cbce4d13 Merge tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - Improve uclamp performance by using a static key for the fast path

 - Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
   better power efficiency of RT tasks on battery powered devices.
   (The default is to maximize performance & reduce RT latencies.)

 - Improve utime and stime tracking accuracy, which had a fixed boundary
   of error, which created larger and larger relative errors as the
   values become larger. This is now replaced with more precise
   arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.

 - Improve the deadline scheduler, such as making it capacity aware

 - Improve frequency-invariant scheduling

 - Misc cleanups in energy/power aware scheduling

 - Add sched_update_nr_running tracepoint to track changes to nr_running

 - Documentation additions and updates

 - Misc cleanups and smaller fixes

* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
  sched/doc: Document capacity aware scheduling
  sched: Document arch_scale_*_capacity()
  arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
  Documentation/sysctl: Document uclamp sysctl knobs
  sched/uclamp: Add a new sysctl to control RT default boost value
  sched/uclamp: Fix a deadlock when enabling uclamp static key
  sched: Remove duplicated tick_nohz_full_enabled() check
  sched: Fix a typo in a comment
  sched/uclamp: Remove unnecessary mutex_init()
  arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
  sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
  arch_topology, sched/core: Cleanup thermal pressure definition
  trace/events/sched.h: fix duplicated word
  linux/sched/mm.h: drop duplicated words in comments
  smp: Fix a potential usage of stale nr_cpus
  sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
  sched: nohz: stop passing around unused "ticks" parameter.
  sched: Better document ttwu()
  sched: Add a tracepoint to track rq->nr_running
  ...
2020-08-03 14:58:38 -07:00
Qais Yousef
13685c4a08 sched/uclamp: Add a new sysctl to control RT default boost value
RT tasks by default run at the highest capacity/performance level. When
uclamp is selected this default behavior is retained by enforcing the
requested uclamp.min (p->uclamp_req[UCLAMP_MIN]) of the RT tasks to be
uclamp_none(UCLAMP_MAX), which is SCHED_CAPACITY_SCALE; the maximum
value.

This is also referred to as 'the default boost value of RT tasks'.

See commit 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks").

On battery powered devices, it is desired to control this default
(currently hardcoded) behavior at runtime to reduce energy consumed by
RT tasks.

For example, a mobile device manufacturer where big.LITTLE architecture
is dominant, the performance of the little cores varies across SoCs, and
on high end ones the big cores could be too power hungry.

Given the diversity of SoCs, the new knob allows manufactures to tune
the best performance/power for RT tasks for the particular hardware they
run on.

They could opt to further tune the value when the user selects
a different power saving mode or when the device is actively charging.

The runtime aspect of it further helps in creating a single kernel image
that can be run on multiple devices that require different tuning.

Keep in mind that a lot of RT tasks in the system are created by the
kernel. On Android for instance I can see over 50 RT tasks, only
a handful of which created by the Android framework.

To control the default behavior globally by system admins and device
integrator, introduce the new sysctl_sched_uclamp_util_min_rt_default
to change the default boost value of the RT tasks.

I anticipate this to be mostly in the form of modifying the init script
of a particular device.

To avoid polluting the fast path with unnecessary code, the approach
taken is to synchronously do the update by traversing all the existing
tasks in the system. This could race with a concurrent fork(), which is
dealt with by introducing sched_post_fork() function which will ensure
the racy fork will get the right update applied.

Tested on Juno-r2 in combination with the RT capacity awareness [1].
By default an RT task will go to the highest capacity CPU and run at the
maximum frequency, which is particularly energy inefficient on high end
mobile devices because the biggest core[s] are 'huge' and power hungry.

With this patch the RT task can be controlled to run anywhere by
default, and doesn't cause the frequency to be maximum all the time.
Yet any task that really needs to be boosted can easily escape this
default behavior by modifying its requested uclamp.min value
(p->uclamp_req[UCLAMP_MIN]) via sched_setattr() syscall.

[1] 804d402fb6: ("sched/rt: Make RT capacity-aware")

Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200716110347.19553-2-qais.yousef@arm.com
2020-07-29 13:51:47 +02:00
Pavel Begunkov
dd6f843a9f tasks: add put_task_struct_many()
put_task_struct_many() is as put_task_struct() but puts several
references at once. Useful to batching it.

Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-07-24 13:00:45 -06:00
Christian Brauner
714acdbd1c arch: rename copy_thread_tls() back to copy_thread()
Now that HAVE_COPY_THREAD_TLS has been removed, rename copy_thread_tls()
back simply copy_thread(). It's a simpler name, and doesn't imply that only
tls is copied here. This finishes an outstanding chunk of internal process
creation work since we've added clone3().

Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>A
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>A
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-07-04 23:41:37 +02:00
Christian Brauner
140c8180eb arch: remove HAVE_COPY_THREAD_TLS
All architectures support copy_thread_tls() now, so remove the legacy
copy_thread() function and the HAVE_COPY_THREAD_TLS config option. Everyone
uses the same process creation calling convention based on
copy_thread_tls() and struct kernel_clone_args. This will make it easier to
maintain the core process creation code under kernel/, simplifies the
callpaths and makes the identical for all architectures.

Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-07-04 23:41:37 +02:00
Christian Brauner
ff2a91127b fork: remove do_fork()
Now that all architectures have been switched to use _do_fork() and the new
struct kernel_clone_args calling convention we can remove the legacy
do_fork() helper completely. The calling convention used to be brittle and
do_fork() didn't buy us anything. The only calling convention accepted
should be based on struct kernel_clone_args going forward. It's cleaner and
uniform.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-07-04 23:41:36 +02:00
Christian Brauner
3af8588c77 fork: fold legacy_clone_args_valid() into _do_fork()
This separate helper only existed to guarantee the mutual exclusivity of
CLONE_PIDFD and CLONE_PARENT_SETTID for legacy clone since CLONE_PIDFD
abuses the parent_tid field to return the pidfd. But we can actually handle
this uniformely thus removing the helper. For legacy clone we can detect
that CLONE_PIDFD is specified in conjunction with CLONE_PARENT_SETTID
because they will share the same memory which is invalid and for clone3()
setting the separate pidfd and parent_tid fields to the same memory is
bogus as well. So fold that helper directly into _do_fork() by detecting
this case.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: x86@kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-06-22 14:38:38 +02:00
Christian Brauner
ef2c41cf38 clone3: allow spawning processes into cgroups
This adds support for creating a process in a different cgroup than its
parent. Callers can limit and account processes and threads right from
the moment they are spawned:
- A service manager can directly spawn new services into dedicated
  cgroups.
- A process can be directly created in a frozen cgroup and will be
  frozen as well.
- The initial accounting jitter experienced by process supervisors and
  daemons is eliminated with this.
- Threaded applications or even thread implementations can choose to
  create a specific cgroup layout where each thread is spawned
  directly into a dedicated cgroup.

This feature is limited to the unified hierarchy. Callers need to pass
a directory file descriptor for the target cgroup. The caller can
choose to pass an O_PATH file descriptor. All usual migration
restrictions apply, i.e. there can be no processes in inner nodes. In
general, creating a process directly in a target cgroup adheres to all
migration restrictions.

One of the biggest advantages of this feature is that CLONE_INTO_GROUP does
not need to grab the write side of the cgroup cgroup_threadgroup_rwsem.
This global lock makes moving tasks/threads around super expensive. With
clone3() this lock is avoided.

Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12 17:57:51 -05:00
Adrian Reber
49cb2fc42c fork: extend clone3() to support setting a PID
The main motivation to add set_tid to clone3() is CRIU.

To restore a process with the same PID/TID CRIU currently uses
/proc/sys/kernel/ns_last_pid. It writes the desired (PID - 1) to
ns_last_pid and then (quickly) does a clone(). This works most of the
time, but it is racy. It is also slow as it requires multiple syscalls.

Extending clone3() to support *set_tid makes it possible restore a
process using CRIU without accessing /proc/sys/kernel/ns_last_pid and
race free (as long as the desired PID/TID is available).

This clone3() extension places the same restrictions (CAP_SYS_ADMIN)
on clone3() with *set_tid as they are currently in place for ns_last_pid.

The original version of this change was using a single value for
set_tid. At the 2019 LPC, after presenting set_tid, it was, however,
decided to change set_tid to an array to enable setting the PID of a
process in multiple PID namespaces at the same time. If a process is
created in a PID namespace it is possible to influence the PID inside
and outside of the PID namespace. Details also in the corresponding
selftest.

To create a process with the following PIDs:

      PID NS level         Requested PID
        0 (host)              31496
        1                        42
        2                         1

For that example the two newly introduced parameters to struct
clone_args (set_tid and set_tid_size) would need to be:

  set_tid[0] = 1;
  set_tid[1] = 42;
  set_tid[2] = 31496;
  set_tid_size = 3;

If only the PIDs of the two innermost nested PID namespaces should be
defined it would look like this:

  set_tid[0] = 1;
  set_tid[1] = 42;
  set_tid_size = 2;

The PID of the newly created process would then be the next available
free PID in the PID namespace level 0 (host) and 42 in the PID namespace
at level 1 and the PID of the process in the innermost PID namespace
would be 1.

The set_tid array is used to specify the PID of a process starting
from the innermost nested PID namespaces up to set_tid_size PID namespaces.

set_tid_size cannot be larger then the current PID namespace level.

Signed-off-by: Adrian Reber <areber@redhat.com>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Link: https://lore.kernel.org/r/20191115123621.142252-1-areber@redhat.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2019-11-15 23:49:22 +01:00