commit a09c17240bdf2e9fa6d0591afa9448b59785f7d4 upstream.
A recent commit ensured that SQPOLL cannot be setup with a CPU that
isn't in the current tasks cpuset, but it also dropped testing whether
the CPU is valid in the first place. Without that, if a task passes in
a CPU value that is too high, the following KASAN splat can get
triggered:
BUG: KASAN: stack-out-of-bounds in io_sq_offload_create+0x858/0xaa4
Read of size 8 at addr ffff800089bc7b90 by task wq-aff.t/1391
CPU: 4 UID: 1000 PID: 1391 Comm: wq-aff.t Not tainted 6.11.0-rc7-00227-g371c468f4db6 #7080
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace.part.0+0xcc/0xe0
show_stack+0x14/0x1c
dump_stack_lvl+0x58/0x74
print_report+0x16c/0x4c8
kasan_report+0x9c/0xe4
__asan_report_load8_noabort+0x1c/0x24
io_sq_offload_create+0x858/0xaa4
io_uring_setup+0x1394/0x17c4
__arm64_sys_io_uring_setup+0x6c/0x180
invoke_syscall+0x6c/0x260
el0_svc_common.constprop.0+0x158/0x224
do_el0_svc+0x3c/0x5c
el0_svc+0x34/0x70
el0t_64_sync_handler+0x118/0x124
el0t_64_sync+0x168/0x16c
The buggy address belongs to stack of task wq-aff.t/1391
and is located at offset 48 in frame:
io_sq_offload_create+0x0/0xaa4
This frame has 1 object:
[32, 40) 'allowed_mask'
The buggy address belongs to the virtual mapping at
[ffff800089bc0000, ffff800089bc9000) created by:
kernel_clone+0x124/0x7e0
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff0000d740af80 pfn:0x11740a
memcg:ffff0000c2706f02
flags: 0xbffe00000000000(node=0|zone=2|lastcpupid=0x1fff)
raw: 0bffe00000000000 0000000000000000 dead000000000122 0000000000000000
raw: ffff0000d740af80 0000000000000000 00000001ffffffff ffff0000c2706f02
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff800089bc7a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff800089bc7b00: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
>ffff800089bc7b80: 00 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
^
ffff800089bc7c00: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
ffff800089bc7c80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f3
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202409161632.cbeeca0d-lkp@intel.com
Fixes: f011c9cf04c0 ("io_uring/sqpoll: do not allow pinning outside of cpuset")
Tested-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 04beb6e0e08c30c6f845f50afb7d7953603d7a6f upstream.
If some part of the kernel adds task_work that needs executing, in terms
of signaling it'll generally use TWA_SIGNAL or TWA_RESUME. Those two
directly translate to TIF_NOTIFY_SIGNAL or TIF_NOTIFY_RESUME, and can
be used for a variety of use case outside of task_work.
However, io_cqring_wait_schedule() only tests explicitly for
TIF_NOTIFY_SIGNAL. This means it can miss if task_work got added for
the task, but used a different kind of signaling mechanism (or none at
all). Normally this doesn't matter as any task_work will be run once
the task exits to userspace, except if:
1) The ring is setup with DEFER_TASKRUN
2) The local work item may generate normal task_work
For condition 2, this can happen when closing a file and it's the final
put of that file, for example. This can cause stalls where a task is
waiting to make progress inside io_cqring_wait(), but there's nothing else
that will wake it up. Hence change the "should we schedule or loop around"
check to check for the presence of task_work explicitly, rather than just
TIF_NOTIFY_SIGNAL as the mechanism. While in there, also change the
ordering of what type of task_work first in terms of ordering, to both
make it consistent with other task_work runs in io_uring, but also to
better handle the case of defer task_work generating normal task_work,
like in the above example.
Reported-by: Jan Hendrik Farr <kernel@jfarr.cc>
Link: https://github.com/axboe/liburing/issues/1235
Cc: stable@vger.kernel.org
Fixes: 846072f16e ("io_uring: mimimise io_cqring_wait_schedule")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f011c9cf04c06f16b24f583d313d3c012e589e50 upstream.
The submit queue polling threads are userland threads that just never
exit to the userland. When creating the thread with IORING_SETUP_SQ_AFF,
the affinity of the poller thread is set to the cpu specified in
sq_thread_cpu. However, this CPU can be outside of the cpuset defined
by the cgroup cpuset controller. This violates the rules defined by the
cpuset controller and is a potential issue for realtime applications.
In b7ed6d8ffd6 we fixed the default affinity of the poller thread, in
case no explicit pinning is required by inheriting the one of the
creating task. In case of explicit pinning, the check is more
complicated, as also a cpu outside of the parent cpumask is allowed.
We implemented this by using cpuset_cpus_allowed (that has support for
cgroup cpusets) and testing if the requested cpu is in the set.
Fixes: 37d1e2e364 ("io_uring: move SQPOLL thread io-wq forked worker")
Cc: stable@vger.kernel.org # 6.1+
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Link: https://lore.kernel.org/r/20240909150036.55921-1-felix.moessbauer@siemens.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0997aa5497c714edbb349ca366d28bd550ba3408 ]
The io worker threads are userland threads that just never exit to the
userland. By that, they are also assigned to a cgroup (the group of the
creating task).
When changing the affinity of the io_wq thread via syscall, we must only
allow cpumasks within the limits defined by the cpuset controller of the
cgroup (if enabled).
Fixes: da64d6db3b ("io_uring: One wqe per wq")
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Link: https://lore.kernel.org/r/20240910171157.166423-2-felix.moessbauer@siemens.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f8b632e89a101dae349a7b212c1771d7925f441b upstream.
io_uring_cancel_generic() should retry if any state changes like a
request is completed, however in case of a task exit it only goes for
another loop and avoids schedule() if any tracked (i.e. REQ_F_INFLIGHT)
request got completed.
Let's assume we have a non-tracked request executing in iowq and a
tracked request linked to it. Let's also assume
io_uring_cancel_generic() fails to find and cancel the request, i.e.
via io_run_local_work(), which may happen as io-wq has gaps.
Next, the request logically completes, io-wq still hold a ref but queues
it for completion via tw, which happens in
io_uring_try_cancel_requests(). After, right before prepare_to_wait()
io-wq puts the request, grabs the linked one and tries executes it, e.g.
arms polling. Finally the cancellation loop calls prepare_to_wait(),
there are no tw to run, no tracked request was completed, so the
tctx_inflight() check passes and the task is put to indefinite sleep.
Cc: stable@vger.kernel.org
Fixes: 3f48cf18f8 ("io_uring: unify files and task cancel")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/acac7311f4e02ce3c43293f8f1fda9c705d158f1.1721819383.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0453aad676ff99787124b9b3af4a5f59fbe808e2 upstream.
If io-wq worker creation fails, we retry it by queueing up a task_work.
tasK_work is needed because it should be done from the user process
context. The problem is that retries are not limited, and if queueing a
task_work is the reason for the failure, we might get into an infinite
loop.
It doesn't seem to happen now but it would with the following patch
executing task_work in the freezer's loop. For now, arbitrarily limit the
number of attempts to create a worker.
Cc: stable@vger.kernel.org
Fixes: 3146cba99a ("io-wq: make worker creation resilient against signals")
Reported-by: Julian Orth <ju.orth@gmail.com>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/8280436925db88448c7c85c6656edee1a43029ea.1720634146.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c4ce0ab27646f4206a9eb502d6fe45cb080e1cae ]
kmemleak complains that there's a memory leak related to connect
handling:
unreferenced object 0xffff0001093bdf00 (size 128):
comm "iou-sqp-455", pid 457, jiffies 4294894164
hex dump (first 32 bytes):
02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 2e481b1a):
[<00000000c0a26af4>] kmemleak_alloc+0x30/0x38
[<000000009c30bb45>] kmalloc_trace+0x228/0x358
[<000000009da9d39f>] __audit_sockaddr+0xd0/0x138
[<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8
[<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4
[<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48
[<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4
[<00000000d999b491>] ret_from_fork+0x10/0x20
which can can happen if:
1) The command type does something on the prep side that triggers an
audit call.
2) The thread hasn't done any operations before this that triggered
an audit call inside ->issue(), where we have audit_uring_entry()
and audit_uring_exit().
Work around this by issuing a blanket NOP operation before the SQPOLL
does anything.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 91215f70ea8541e9011c0b48f8b59b9e0ce6953b ]
Clang static checker (scan-build) warning:
o_uring/io-wq.c:line 1051, column 3
The expression is an uninitialized value. The computed value will
also be garbage.
'match.nr_pending' is used in io_acct_cancel_pending_work(), but it is
not fully initialized. Change the order of assignment for 'match' to fix
this problem.
Fixes: 42abc95f05 ("io-wq: decouple work_list protection from the big wqe->lock")
Signed-off-by: Su Hui <suhui@nfschina.com>
Link: https://lore.kernel.org/r/20240604121242.2661244-1-suhui@nfschina.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8a565304927fbd28c9f028c492b5c1714002cbab ]
Utilize set_bit() and test_bit() on worker->flags within io_uring/io-wq
to address potential data races.
The structure io_worker->flags may be accessed through various data
paths, leading to concurrency issues. When KCSAN is enabled, it reveals
data races occurring in io_worker_handle_work and
io_wq_activate_free_worker functions.
BUG: KCSAN: data-race in io_worker_handle_work / io_wq_activate_free_worker
write to 0xffff8885c4246404 of 4 bytes by task 49071 on cpu 28:
io_worker_handle_work (io_uring/io-wq.c:434 io_uring/io-wq.c:569)
io_wq_worker (io_uring/io-wq.c:?)
<snip>
read to 0xffff8885c4246404 of 4 bytes by task 49024 on cpu 5:
io_wq_activate_free_worker (io_uring/io-wq.c:? io_uring/io-wq.c:285)
io_wq_enqueue (io_uring/io-wq.c:947)
io_queue_iowq (io_uring/io_uring.c:524)
io_req_task_submit (io_uring/io_uring.c:1511)
io_handle_tw_list (io_uring/io_uring.c:1198)
<snip>
Line numbers against commit 18daea77cca6 ("Merge tag 'for-linus' of
git://git.kernel.org/pub/scm/virt/kvm/kvm").
These races involve writes and reads to the same memory location by
different tasks running on different CPUs. To mitigate this, refactor
the code to use atomic operations such as set_bit(), test_bit(), and
clear_bit() instead of basic "and" and "or" operations. This ensures
thread-safe manipulation of worker flags.
Also, move `create_index` to avoid holes in the structure.
Signed-off-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/r/20240507170002.2269003-1-leitao@debian.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Stable-dep-of: 91215f70ea85 ("io_uring/io-wq: avoid garbage value of 'match' in io_wq_enqueue()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 54559642b96116b45e4b5ca7fd9f7835b8561272 upstream.
There is a report of io_rsrc_ref_quiesce() locking a mutex while not
TASK_RUNNING, which is due to forgetting restoring the state back after
io_run_task_work_sig() and attempts to break out of the waiting loop.
do not call blocking ops when !TASK_RUNNING; state=1 set at
[<ffffffff815d2494>] prepare_to_wait+0xa4/0x380
kernel/sched/wait.c:237
WARNING: CPU: 2 PID: 397056 at kernel/sched/core.c:10099
__might_sleep+0x114/0x160 kernel/sched/core.c:10099
RIP: 0010:__might_sleep+0x114/0x160 kernel/sched/core.c:10099
Call Trace:
<TASK>
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0xb4/0x940 kernel/locking/mutex.c:752
io_rsrc_ref_quiesce+0x590/0x940 io_uring/rsrc.c:253
io_sqe_buffers_unregister+0xa2/0x340 io_uring/rsrc.c:799
__io_uring_register io_uring/register.c:424 [inline]
__do_sys_io_uring_register+0x5b9/0x2400 io_uring/register.c:613
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd8/0x270 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6f/0x77
Reported-by: Li Shi <sl1589472800@gmail.com>
Fixes: 4ea15b56f0 ("io_uring/rsrc: use wq for quiescing")
Cc: stable@vger.kernel.org
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/77966bc104e25b0534995d5dbb152332bc8f31c0.1718196953.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 068c27e32e51e94e4a9eb30ae85f4097a3602980 ]
Commit 361aee450c ("io-wq: add intermediate work step between pending
list and active work") closed a race between a cancellation and the work
being removed from the wq for execution. To ensure the request is
always reachable by the cancellation, we need to move it within the wq
lock, which also synchronizes the cancellation. But commit
42abc95f05 ("io-wq: decouple work_list protection from the big
wqe->lock") replaced the wq lock here and accidentally reintroduced the
race by releasing the acct_lock too early.
In other words:
worker | cancellation
work = io_get_next_work() |
raw_spin_unlock(&acct->lock); |
|
| io_acct_cancel_pending_work
| io_wq_worker_cancel()
worker->next_work = work
Using acct_lock is still enough since we synchronize on it on
io_acct_cancel_pending_work.
Fixes: 42abc95f05 ("io-wq: decouple work_list protection from the big wqe->lock")
Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
Link: https://lore.kernel.org/r/20240416021054.3940-2-krisman@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 22537c9f79417fed70b352d54d01d2586fee9521 ]
io_task_work_pending() uses wq_list_empty() on ctx->work_llist, but it's
not an io_wq_work_list, it's a struct llist_head. They both have
->first as head-of-list, and it turns out the checks are identical. But
be proper and use the right helper.
Fixes: dac6a0eae7 ("io_uring: ensure iopoll runs local task work as well")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3d8f874bd620ce03f75a5512847586828ab86544 upstream.
The NOP op flags should have been checked from beginning like any other
opcode, otherwise NOP may not be extended with the op flags.
Given both liburing and Rust io-uring crate always zeros SQE op flags, just
ignore users which play raw NOP uring interface without zeroing SQE, because
NOP is just for test purpose. Then we can save one NOP2 opcode.
Suggested-by: Jens Axboe <axboe@kernel.dk>
Fixes: 2b188cc1bb ("Add io_uring IO interface")
Cc: stable@vger.kernel.org
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20240510035031.78874-2-ming.lei@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e21e1c45e1fe2e31732f40256b49c04e76a17cee ]
If failure happens before the opcode prep handler is called, ensure that
we clear the opcode specific area of the request, which holds data
specific to that request type. This prevents errors where opcode
handlers either don't get to clear per-request private data since prep
isn't even called.
Reported-and-tested-by: syzbot+f8e9a371388aa62ecab4@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 561e4f9451d65fc2f7eef564e0064373e3019793 upstream.
If we look up the kbuf, ensure that it doesn't get unregistered until
after we're done with it. Since we're inside mmap, we cannot safely use
the io_uring lock. Rely on the fact that we can lookup the buffer list
under RCU now and grab a reference to it, preventing it from being
unregistered until we're done with it. The lookup returns the
io_buffer_list directly with it referenced.
Cc: stable@vger.kernel.org # v6.4+
Fixes: 5cf4f52e6d8a ("io_uring: free io_buffer_list entries via RCU")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b69c4ab4f685327d9e10caf0d84217ba23a8c4b upstream.
No functional changes in this patch, just in preparation for being able
to keep the buffer list alive outside of the ctx->uring_lock.
Cc: stable@vger.kernel.org # v6.4+
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3b80cff5a4d117c53d38ce805823084eaeffbde6 upstream.
Now that xarray is being exclusively used for the buffer_list lookup,
this check is no longer needed. Get rid of it and the is_ready member.
Cc: stable@vger.kernel.org # v6.4+
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>