Commit Graph

105 Commits

Author SHA1 Message Date
Will Deacon
a5c21dcefa dcache: allow word-at-a-time name hashing with big-endian CPUs
When explicitly hashing the end of a string with the word-at-a-time
interface, we have to be careful which end of the word we pick up.

On big-endian CPUs, the upper-bits will contain the data we're after, so
ensure we generate our masks accordingly (and avoid hashing whatever
random junk may have been sitting after the string).

This patch adds a new dcache helper, bytemask_from_count, which creates
a mask appropriate for the CPU endianness.

Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12 10:39:01 -08:00
David Howells
b18825a7c8 VFS: Put a small type field into struct dentry::d_flags
Put a type field into struct dentry::d_flags to indicate if the dentry is one
of the following types that relate particularly to pathwalk:

	Miss (negative dentry)
	Directory
	"Automount" directory (defective - no i_op->lookup())
	Symlink
	Other (regular, socket, fifo, device)

The type field is set to one of the first five types on a dentry by calls to
__d_instantiate() and d_obtain_alias() from information in the inode (if one is
given).

The type is cleared by dentry_unlink_inode() when it reconstitutes an existing
dentry as a negative dentry.

Accessors provided are:

	d_set_type(dentry, type)
	d_is_directory(dentry)
	d_is_autodir(dentry)
	d_is_symlink(dentry)
	d_is_file(dentry)
	d_is_negative(dentry)
	d_is_positive(dentry)

A bunch of checks in pathname resolution switched to those.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-11-09 00:16:30 -05:00
Miklos Szeredi
b70a80e7a1 vfs: introduce d_instantiate_no_diralias()
...which just returns -EBUSY if a directory alias would be created.

This is to be used by fuse mkdir to make sure that a buggy or malicious
userspace filesystem doesn't do anything nasty.  Previously fuse used a
private mutex for this purpose, which can now go away.

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2013-10-24 23:41:37 -04:00
Glauber Costa
55f841ce93 super: fix calculation of shrinkable objects for small numbers
The sysctl knob sysctl_vfs_cache_pressure is used to determine which
percentage of the shrinkable objects in our cache we should actively try
to shrink.

It works great in situations in which we have many objects (at least more
than 100), because the aproximation errors will be negligible.  But if
this is not the case, specially when total_objects < 100, we may end up
concluding that we have no objects at all (total / 100 = 0, if total <
100).

This is certainly not the biggest killer in the world, but may matter in
very low kernel memory situations.

Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:29 -04:00
Glauber Costa
3942c07ccf fs: bump inode and dentry counters to long
This series reworks our current object cache shrinking infrastructure in
two main ways:

 * Noticing that a lot of users copy and paste their own version of LRU
   lists for objects, we put some effort in providing a generic version.
   It is modeled after the filesystem users: dentries, inodes, and xfs
   (for various tasks), but we expect that other users could benefit in
   the near future with little or no modification.  Let us know if you
   have any issues.

 * The underlying list_lru being proposed automatically and
   transparently keeps the elements in per-node lists, and is able to
   manipulate the node lists individually.  Given this infrastructure, we
   are able to modify the up-to-now hammer called shrink_slab to proceed
   with node-reclaim instead of always searching memory from all over like
   it has been doing.

Per-node lru lists are also expected to lead to less contention in the lru
locks on multi-node scans, since we are now no longer fighting for a
global lock.  The locks usually disappear from the profilers with this
change.

Although we have no official benchmarks for this version - be our guest to
independently evaluate this - earlier versions of this series were
performance tested (details at
http://permalink.gmane.org/gmane.linux.kernel.mm/100537) yielding no
visible performance regressions while yielding a better qualitative
behavior in NUMA machines.

With this infrastructure in place, we can use the list_lru entry point to
provide memcg isolation and per-memcg targeted reclaim.  Historically,
those two pieces of work have been posted together.  This version presents
only the infrastructure work, deferring the memcg work for a later time,
so we can focus on getting this part tested.  You can see more about the
history of such work at http://lwn.net/Articles/552769/

Dave Chinner (18):
  dcache: convert dentry_stat.nr_unused to per-cpu counters
  dentry: move to per-sb LRU locks
  dcache: remove dentries from LRU before putting on dispose list
  mm: new shrinker API
  shrinker: convert superblock shrinkers to new API
  list: add a new LRU list type
  inode: convert inode lru list to generic lru list code.
  dcache: convert to use new lru list infrastructure
  list_lru: per-node list infrastructure
  shrinker: add node awareness
  fs: convert inode and dentry shrinking to be node aware
  xfs: convert buftarg LRU to generic code
  xfs: rework buffer dispose list tracking
  xfs: convert dquot cache lru to list_lru
  fs: convert fs shrinkers to new scan/count API
  drivers: convert shrinkers to new count/scan API
  shrinker: convert remaining shrinkers to count/scan API
  shrinker: Kill old ->shrink API.

Glauber Costa (7):
  fs: bump inode and dentry counters to long
  super: fix calculation of shrinkable objects for small numbers
  list_lru: per-node API
  vmscan: per-node deferred work
  i915: bail out earlier when shrinker cannot acquire mutex
  hugepage: convert huge zero page shrinker to new shrinker API
  list_lru: dynamically adjust node arrays

This patch:

There are situations in very large machines in which we can have a large
quantity of dirty inodes, unused dentries, etc.  This is particularly true
when umounting a filesystem, where eventually since every live object will
eventually be discarded.

Dave Chinner reported a problem with this while experimenting with the
shrinker revamp patchset.  So we believe it is time for a change.  This
patch just moves int to longs.  Machines where it matters should have a
big long anyway.

Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-10 18:56:29 -04:00
Linus Torvalds
8aab6a2733 vfs: reorganize dput() memory accesses
This is me being a bit OCD after all the dentry optimization work this
merge window: profiles end up showing 'dput()' as a rather expensive
operation, and there were two unrelated bad reasons for that.

The first reason was reading d_lockref.count for debugging purposes,
which touches the lockref cacheline (for reads) before really need to.
More importantly, the debugging test in question is _wrong_, and has
hidden bugs.  It's true that we can only sleep when the count goes down
to zero, but the test as-is hides the much more subtle bug that happens
if we race with somebody else deleting the file.

Anyway we _will_ touch that cacheline, but let's do it for a write and
in the right routine (ie in "lockref_put_or_lock()") which annotates the
costs better.  So remove the misleading debug code.

The other was an unnecessary access to the cacheline that contains the
d_lru list, just to check whether we already were on the LRU list or
not.  This is exactly what we have d_flags for, so that we can avoid
touching extra cache lines for the common case.  So just add another bit
for "is this dentry on the LRU".

Finally, mark the tests properly likely/unlikely, so that the common
fast-paths are dense in the instruction stream.

This makes the profiles look much saner.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-08 13:26:18 -07:00
Al Viro
f0d3b3ded9 constify dcache.c inlined helpers where possible
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-05 16:23:55 -04:00
Miklos Szeredi
848ac114e8 vfs: check submounts and drop atomically
We check submounts before doing d_drop() on a non-empty directory dentry in
NFS (have_submounts()), but we do not exclude a racing mount.

 Process A: have_submounts() -> returns false
 Process B: mount() -> success
 Process A: d_drop()

This patch prepares the ground for the fix by doing the following
operations all under the same rename lock:

  have_submounts()
  shrink_dcache_parent()
  d_drop()

This is actually an optimization since have_submounts() and
shrink_dcache_parent() both traverse the same dentry tree separately.

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: David Howells <dhowells@redhat.com>
CC: Steven Whitehouse <swhiteho@redhat.com>
CC: Trond Myklebust <Trond.Myklebust@netapp.com>
CC: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-09-05 16:23:41 -04:00
Linus Torvalds
15570086b5 vfs: reimplement d_rcu_to_refcount() using lockref_get_or_lock()
This moves __d_rcu_to_refcount() from <linux/dcache.h> into fs/namei.c
and re-implements it using the lockref infrastructure instead.  It also
adds a lot of comments about what is actually going on, because turning
a dentry that was looked up using RCU into a long-lived reference
counted entry is one of the more subtle parts of the rcu walk.

We also used to be _particularly_ subtle in unlazy_walk() where we
re-validate both the dentry and its parent using the same sequence
count.  We used to do it by nesting the locks and then verifying the
sequence count just once.

That was silly, because nested locking is expensive, but the sequence
count check is not.  So this just re-validates the dentry and the parent
separately, avoiding the nested locking, and making the lockref lookup
possible.

Acked-by: Waiman Long <waiman.long@hp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-02 11:38:06 -07:00
Waiman Long
98474236f7 vfs: make the dentry cache use the lockref infrastructure
This just replaces the dentry count/lock combination with the lockref
structure that contains both a count and a spinlock, and does the
mechanical conversion to use the lockref infrastructure.

There are no semantic changes here, it's purely syntactic.  The
reference lockref implementation uses the spinlock exactly the same way
that the old dcache code did, and the bulk of this patch is just
expanding the internal "d_count" use in the dcache code to use
"d_lockref.count" instead.

This is purely preparation for the real change to make the reference
count updates be lockless during the 3.12 merge window.

[ As with the previous commit, this is a rewritten version of a concept
  originally from Waiman, so credit goes to him, blame for any errors
  goes to me.

  Waiman's patch had some semantic differences for taking advantage of
  the lockless update in dget_parent(), while this patch is
  intentionally a pure search-and-replace change with no semantic
  changes.     - Linus ]

Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-28 18:24:59 -07:00
Al Viro
118b230225 cope with potentially long ->d_dname() output for shmem/hugetlb
dynamic_dname() is both too much and too little for those - the
output may be well in excess of 64 bytes dynamic_dname() assumes
to be enough (thanks to ashmem feeding really long names to
shmem_file_setup()) and vsnprintf() is an overkill for those
guys.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-24 12:10:17 -04:00
Peng Tao
24924a20da vfs: constify dentry parameter in d_count()
so that it can be used in places like d_compare/d_hash
without causing a compiler warning.

Signed-off-by: Peng Tao <tao.peng@emc.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-07-20 05:06:27 +04:00
Al Viro
84d08fa888 helper for reading ->d_count
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-07-05 18:59:33 +04:00
Linus Torvalds
da53be12bb Don't pass inode to ->d_hash() and ->d_compare()
Instances either don't look at it at all (the majority of cases) or
only want it to find the superblock (which can be had as dentry->d_sb).
A few cases that want more are actually safe with dentry->d_inode -
the only precaution needed is the check that it hadn't been replaced with
NULL by rmdir() or by overwriting rename(), which case should be simply
treated as cache miss.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-06-29 12:57:36 +04:00
Al Viro
60545d0d46 [O_TMPFILE] it's still short a few helpers, but infrastructure should be OK now...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-06-29 12:57:10 +04:00
Jeff Layton
ecf3d1f1aa vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
The following set of operations on a NFS client and server will cause

    server# mkdir a
    client# cd a
    server# mv a a.bak
    client# sleep 30  # (or whatever the dir attrcache timeout is)
    client# stat .
    stat: cannot stat `.': Stale NFS file handle

Obviously, we should not be getting an ESTALE error back there since the
inode still exists on the server. The problem is that the lookup code
will call d_revalidate on the dentry that "." refers to, because NFS has
FS_REVAL_DOT set.

nfs_lookup_revalidate will see that the parent directory has changed and
will try to reverify the dentry by redoing a LOOKUP. That of course
fails, so the lookup code returns ESTALE.

The problem here is that d_revalidate is really a bad fit for this case.
What we really want to know at this point is whether the inode is still
good or not, but we don't really care what name it goes by or whether
the dcache is still valid.

Add a new d_op->d_weak_revalidate operation and have complete_walk call
that instead of d_revalidate. The intent there is to allow for a
"weaker" d_revalidate that just checks to see whether the inode is still
good. This is also gives us an opportunity to kill off the FS_REVAL_DOT
special casing.

[AV: changed method name, added note in porting, fixed confusion re
having it possibly called from RCU mode (it won't be)]

Cc: NeilBrown <neilb@suse.de>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-26 02:46:09 -05:00
Al Viro
da2d8455ed constify d_lookup() arguments
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-22 23:31:35 -05:00
Al Viro
a713ca2ab9 constify __d_lookup() arguments
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-22 23:31:35 -05:00
Jeff Layton
ad8ca3743c vfs: remove d_path_with_unreachable
The last caller was removed >2 years ago in commit 7b2a69ba7.

Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-22 23:31:33 -05:00
Jeff Layton
39e3c9553f vfs: remove DCACHE_NEED_LOOKUP
The code that relied on that flag was ripped out of btrfs quite some
time ago, and never added back. Josef indicated that he was going to
take a different approach to the problem in btrfs, and that we
could just eliminate this flag.

Cc: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-12-20 13:57:36 -05:00
Miklos Szeredi
b161dfa693 vfs: dcache: use DCACHE_DENTRY_KILLED instead of DCACHE_DISCONNECTED in d_kill()
IBM reported a soft lockup after applying the fix for the rename_lock
deadlock.  Commit c83ce989cb ("VFS: Fix the nfs sillyrename regression
in kernel 2.6.38") was found to be the culprit.

The nfs sillyrename fix used DCACHE_DISCONNECTED to indicate that the
dentry was killed.  This flag can be set on non-killed dentries too,
which results in infinite retries when trying to traverse the dentry
tree.

This patch introduces a separate flag: DCACHE_DENTRY_KILLED, which is
only set in d_kill() and makes try_to_ascend() test only this flag.

IBM reported successful test results with this patch.

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-18 11:23:51 -07:00
Al Viro
0b728e1911 stop passing nameidata * to ->d_revalidate()
Just the lookup flags.  Die, bastard, die...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-07-14 16:34:14 +04:00
Al Viro
b3d9b7a3c7 vfs: switch i_dentry/d_alias to hlist
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-07-14 16:32:55 +04:00
Linus Torvalds
26fe575028 vfs: make it possible to access the dentry hash/len as one 64-bit entry
This allows comparing hash and len in one operation on 64-bit
architectures.  Right now only __d_lookup_rcu() takes advantage of this,
since that is the case we care most about.

The use of anonymous struct/unions hides the alternate 64-bit approach
from most users, the exception being a few cases where we initialize a
'struct qstr' with a static initializer.  This makes the problematic
cases use a new QSTR_INIT() helper function for that (but initializing
just the name pointer with a "{ .name = xyzzy }" initializer remains
valid, as does just copying another qstr structure).

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-10 19:54:35 -07:00
Linus Torvalds
12f8ad4b05 vfs: clean up __d_lookup_rcu() and dentry_cmp() interfaces
The calling conventions for __d_lookup_rcu() and dentry_cmp() are
annoying in different ways, and there is actually one single underlying
reason for both of the annoyances.

The fundamental reason is that we do the returned dentry sequence number
check inside __d_lookup_rcu() instead of doing it in the caller.  This
results in two annoyances:

 - __d_lookup_rcu() now not only needs to return the dentry and the
   sequence number that goes along with the lookup, it also needs to
   return the inode pointer that was validated by that sequence number
   check.

 - and because we did the sequence number check early (to validate the
   name pointer and length) we also couldn't just pass the dentry itself
   to dentry_cmp(), we had to pass the counted string that contained the
   name.

So that sequence number decision caused two separate ugly calling
conventions.

Both of these problems would be solved if we just did the sequence
number check in the caller instead.  There's only one caller, and that
caller already has to do the sequence number check for the parent
anyway, so just do that.

That allows us to stop returning the dentry->d_inode in that in-out
argument (pointer-to-pointer-to-inode), so we can make the inode
argument just a regular input inode pointer.  The caller can just load
the inode from dentry->d_inode, and then do the sequence number check
after that to make sure that it's synchronized with the name we looked
up.

And it allows us to just pass in the dentry to dentry_cmp(), which is
what all the callers really wanted.  Sure, dentry_cmp() has to be a bit
careful about the dentry (which is not stable during RCU lookup), but
that's actually very simple.

And now that dentry_cmp() can clearly see that the first string argument
is a dentry, we can use the direct word access for that, instead of the
careful unaligned zero-padding.  The dentry name is always properly
aligned, since it is a single path component that is either embedded
into the dentry itself, or was allocated with kmalloc() (see __d_alloc).

Finally, this also uninlines the nasty slow-case for dentry comparisons:
that one *does* need to do a sequence number check, since it will call
in to the low-level filesystems, and we want to give those a stable
inode pointer and path component length/start arguments.  Doing an extra
sequence check for that slow case is not a problem, though.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-04 18:21:14 -07:00