commit 6f86bdeab633a56d5c6dccf1a2c5989b6a5e323e upstream.
The following commands causes a crash:
~# cd /sys/kernel/tracing/events/rcu/rcu_callback
~# echo 'hist:name=bad:keys=common_pid:onmax(bogus).save(common_pid)' > trigger
bash: echo: write error: Invalid argument
~# echo 'hist:name=bad:keys=common_pid' > trigger
Because the following occurs:
event_trigger_write() {
trigger_process_regex() {
event_hist_trigger_parse() {
data = event_trigger_alloc(..);
event_trigger_register(.., data) {
cmd_ops->reg(.., data, ..) [hist_register_trigger()] {
data->ops->init() [event_hist_trigger_init()] {
save_named_trigger(name, data) {
list_add(&data->named_list, &named_triggers);
}
}
}
}
ret = create_actions(); (return -EINVAL)
if (ret)
goto out_unreg;
[..]
ret = hist_trigger_enable(data, ...) {
list_add_tail_rcu(&data->list, &file->triggers); <<<---- SKIPPED!!! (this is important!)
[..]
out_unreg:
event_hist_unregister(.., data) {
cmd_ops->unreg(.., data, ..) [hist_unregister_trigger()] {
list_for_each_entry(iter, &file->triggers, list) {
if (!hist_trigger_match(data, iter, named_data, false)) <- never matches
continue;
[..]
test = iter;
}
if (test && test->ops->free) <<<-- test is NULL
test->ops->free(test) [event_hist_trigger_free()] {
[..]
if (data->name)
del_named_trigger(data) {
list_del(&data->named_list); <<<<-- NEVER gets removed!
}
}
}
}
[..]
kfree(data); <<<-- frees item but it is still on list
The next time a hist with name is registered, it causes an u-a-f bug and
the kernel can crash.
Move the code around such that if event_trigger_register() succeeds, the
next thing called is hist_trigger_enable() which adds it to the list.
A bunch of actions is called if get_named_trigger_data() returns false.
But that doesn't need to be called after event_trigger_register(), so it
can be moved up, allowing event_trigger_register() to be called just
before hist_trigger_enable() keeping them together and allowing the
file->triggers to be properly populated.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250227163944.1c37f85f@gandalf.local.home
Fixes: 067fe038e7 ("tracing: Add variable reference handling to hist triggers")
Reported-by: Tomas Glozar <tglozar@redhat.com>
Tested-by: Tomas Glozar <tglozar@redhat.com>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Closes: https://lore.kernel.org/all/CAP4=nvTsxjckSBTz=Oe_UYh8keD9_sZC4i++4h72mJLic4_W4A@mail.gmail.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57b76bedc5c52c66968183b5ef57234894c25ce7 upstream.
The function tracer should record the preemption level at the point when
the function is invoked. If the tracing subsystem decrement the
preemption counter it needs to correct this before feeding the data into
the trace buffer. This was broken in the commit cited below while
shifting the preempt-disabled section.
Use tracing_gen_ctx_dec() which properly subtracts one from the
preemption counter on a preemptible kernel.
Cc: stable@vger.kernel.org
Cc: Wander Lairson Costa <wander@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20250220140749.pfw8qoNZ@linutronix.de
Fixes: ce5e48036c ("ftrace: disable preemption when recursion locked")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e3ff4245928f948f3eb2e852aa350b870421c358 upstream.
If a timerlat tracer is started with the osnoise option OSNOISE_WORKLOAD
disabled, but then that option is enabled and timerlat is removed, the
tracepoints that were enabled on timerlat registration do not get
disabled. If the option is disabled again and timelat is started, then it
triggers a warning in the tracepoint code due to registering the
tracepoint again without ever disabling it.
Do not use the same user space defined options to know to disable the
tracepoints when timerlat is removed. Instead, set a global flag when it
is enabled and use that flag to know to disable the events.
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
~# echo OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo nop > /sys/kernel/tracing/current_tracer
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
Triggers:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1337 at kernel/tracepoint.c:294 tracepoint_add_func+0x3b6/0x3f0
Modules linked in:
CPU: 6 UID: 0 PID: 1337 Comm: rtla Not tainted 6.13.0-rc4-test-00018-ga867c441128e-dirty #73
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:tracepoint_add_func+0x3b6/0x3f0
Code: 48 8b 53 28 48 8b 73 20 4c 89 04 24 e8 23 59 11 00 4c 8b 04 24 e9 36 fe ff ff 0f 0b b8 ea ff ff ff 45 84 e4 0f 84 68 fe ff ff <0f> 0b e9 61 fe ff ff 48 8b 7b 18 48 85 ff 0f 84 4f ff ff ff 49 8b
RSP: 0018:ffffb9b003a87ca0 EFLAGS: 00010202
RAX: 00000000ffffffef RBX: ffffffff92f30860 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff9bf59e91ccd0 RDI: ffffffff913b6410
RBP: 000000000000000a R08: 00000000000005c7 R09: 0000000000000002
R10: ffffb9b003a87ce0 R11: 0000000000000002 R12: 0000000000000001
R13: ffffb9b003a87ce0 R14: ffffffffffffffef R15: 0000000000000008
FS: 00007fce81209240(0000) GS:ffff9bf6fdd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055e99b728000 CR3: 00000001277c0002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __warn.cold+0xb7/0x14d
? tracepoint_add_func+0x3b6/0x3f0
? report_bug+0xea/0x170
? handle_bug+0x58/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __pfx_trace_sched_migrate_callback+0x10/0x10
? tracepoint_add_func+0x3b6/0x3f0
? __pfx_trace_sched_migrate_callback+0x10/0x10
? __pfx_trace_sched_migrate_callback+0x10/0x10
tracepoint_probe_register+0x78/0xb0
? __pfx_trace_sched_migrate_callback+0x10/0x10
osnoise_workload_start+0x2b5/0x370
timerlat_tracer_init+0x76/0x1b0
tracing_set_tracer+0x244/0x400
tracing_set_trace_write+0xa0/0xe0
vfs_write+0xfc/0x570
? do_sys_openat2+0x9c/0xe0
ksys_write+0x72/0xf0
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: Gabriele Monaco <gmonaco@redhat.com>
Cc: Luis Goncalves <lgoncalv@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Link: https://lore.kernel.org/20250123204159.4450c88e@gandalf.local.home
Fixes: e88ed227f6 ("tracing/timerlat: Add user-space interface")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b9c44b91476b67327a521568a854babecc4070ab ]
Currently, space for raw sample data is always allocated within sample
records for both BPF output and tracepoint events. This leads to unused
space in sample records when raw sample data is not requested.
This patch enforces checking sample type of an event in
perf_sample_save_raw_data(). So raw sample data will only be saved if
explicitly requested, reducing overhead when it is not needed.
Fixes: 0a9081cf0a ("perf/core: Add perf_sample_save_raw_data() helper")
Signed-off-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20240515193610.2350456-2-yabinc@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit afd2627f727b89496d79a6b934a025fc916d4ded ]
The TP_printk() portion of a trace event is executed at the time a event
is read from the trace. This can happen seconds, minutes, hours, days,
months, years possibly later since the event was recorded. If the print
format contains a dereference to a string via "%s", and that string was
allocated, there's a chance that string could be freed before it is read
by the trace file.
To protect against such bugs, there are two functions that verify the
event. The first one is test_event_printk(), which is called when the
event is created. It reads the TP_printk() format as well as its arguments
to make sure nothing may be dereferencing a pointer that was not copied
into the ring buffer along with the event. If it is, it will trigger a
WARN_ON().
For strings that use "%s", it is not so easy. The string may not reside in
the ring buffer but may still be valid. Strings that are static and part
of the kernel proper which will not be freed for the life of the running
system, are safe to dereference. But to know if it is a pointer to a
static string or to something on the heap can not be determined until the
event is triggered.
This brings us to the second function that tests for the bad dereferencing
of strings, trace_check_vprintf(). It would walk through the printf format
looking for "%s", and when it finds it, it would validate that the pointer
is safe to read. If not, it would produces a WARN_ON() as well and write
into the ring buffer "[UNSAFE-MEMORY]".
The problem with this is how it used va_list to have vsnprintf() handle
all the cases that it didn't need to check. Instead of re-implementing
vsnprintf(), it would make a copy of the format up to the %s part, and
call vsnprintf() with the current va_list ap variable, where the ap would
then be ready to point at the string in question.
For architectures that passed va_list by reference this was possible. For
architectures that passed it by copy it was not. A test_can_verify()
function was used to differentiate between the two, and if it wasn't
possible, it would disable it.
Even for architectures where this was feasible, it was a stretch to rely
on such a method that is undocumented, and could cause issues later on
with new optimizations of the compiler.
Instead, the first function test_event_printk() was updated to look at
"%s" as well. If the "%s" argument is a pointer outside the event in the
ring buffer, it would find the field type of the event that is the problem
and mark the structure with a new flag called "needs_test". The event
itself will be marked by TRACE_EVENT_FL_TEST_STR to let it be known that
this event has a field that needs to be verified before the event can be
printed using the printf format.
When the event fields are created from the field type structure, the
fields would copy the field type's "needs_test" value.
Finally, before being printed, a new function ignore_event() is called
which will check if the event has the TEST_STR flag set (if not, it
returns false). If the flag is set, it then iterates through the events
fields looking for the ones that have the "needs_test" flag set.
Then it uses the offset field from the field structure to find the pointer
in the ring buffer event. It runs the tests to make sure that pointer is
safe to print and if not, it triggers the WARN_ON() and also adds to the
trace output that the event in question has an unsafe memory access.
The ignore_event() makes the trace_check_vprintf() obsolete so it is
removed.
Link: https://lore.kernel.org/all/CAHk-=wh3uOnqnZPpR0PeLZZtyWbZLboZ7cHLCKRWsocvs9Y7hQ@mail.gmail.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.848621576@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 50a3242d84ee1625b0bfef29b95f935958dccfbe ]
When the tp_printk kernel command line is used, the trace events go
directly to printk(). It is still checked via the trace_check_vprintf()
function to make sure the pointers of the trace event are legit.
The addition of reading buffers from previous boots required adding a
delta between the addresses of the previous boot and the current boot so
that the pointers in the old buffer can still be used. But this required
adding a trace_array pointer to acquire the delta offsets.
The tp_printk code does not provide a trace_array (tr) pointer, so when
the offsets were examined, a NULL pointer dereference happened and the
kernel crashed.
If the trace_array does not exist, just default the delta offsets to zero,
as that also means the trace event is not being read from a previous boot.
Link: https://lore.kernel.org/all/Zv3z5UsG_jsO9_Tb@aschofie-mobl2.lan/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241003104925.4e1b1fd9@gandalf.local.home
Fixes: 07714b4bb3f98 ("tracing: Handle old buffer mappings for event strings and functions")
Reported-by: Alison Schofield <alison.schofield@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit afc6717628f959941d7b33728570568b4af1c4b8 upstream.
In order to catch a common bug where a TRACE_EVENT() TP_fast_assign()
assigns an address of an allocated string to the ring buffer and then
references it in TP_printk(), which can be executed hours later when the
string is free, the function test_event_printk() runs on all events as
they are registered to make sure there's no unwanted dereferencing.
It calls process_string() to handle cases in TP_printk() format that has
"%s". It returns whether or not the string is safe. But it can have some
false positives.
For instance, xe_bo_move() has:
TP_printk("move_lacks_source:%s, migrate object %p [size %zu] from %s to %s device_id:%s",
__entry->move_lacks_source ? "yes" : "no", __entry->bo, __entry->size,
xe_mem_type_to_name[__entry->old_placement],
xe_mem_type_to_name[__entry->new_placement], __get_str(device_id))
Where the "%s" references into xe_mem_type_to_name[]. This is an array of
pointers that should be safe for the event to access. Instead of flagging
this as a bad reference, if a reference points to an array, where the
record field is the index, consider it safe.
Link: https://lore.kernel.org/all/9dee19b6185d325d0e6fa5f7cbba81d007d99166.camel@sapience.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241231000646.324fb5f7@gandalf.local.home
Fixes: 65a25d9f7ac02 ("tracing: Add "%s" check in test_event_printk()")
Reported-by: Genes Lists <lists@sapience.com>
Tested-by: Gene C <arch@sapience.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d685d55dfc86b1a4bdcec77c3c1f8a83f181264e ]
Make sure the trace_kprobe's module notifer callback function is called
after jump_label's callback is called. Since the trace_kprobe's callback
eventually checks jump_label address during registering new kprobe on
the loading module, jump_label must be updated before this registration
happens.
Link: https://lore.kernel.org/all/173387585556.995044.3157941002975446119.stgit@devnote2/
Fixes: 6142431810 ("tracing/kprobes: Support module init function probing")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 65a25d9f7ac02e0cf361356e834d1c71d36acca9 upstream.
The test_event_printk() code makes sure that when a trace event is
registered, any dereferenced pointers in from the event's TP_printk() are
pointing to content in the ring buffer. But currently it does not handle
"%s", as there's cases where the string pointer saved in the ring buffer
points to a static string in the kernel that will never be freed. As that
is a valid case, the pointer needs to be checked at runtime.
Currently the runtime check is done via trace_check_vprintf(), but to not
have to replicate everything in vsnprintf() it does some logic with the
va_list that may not be reliable across architectures. In order to get rid
of that logic, more work in the test_event_printk() needs to be done. Some
of the strings can be validated at this time when it is obvious the string
is valid because the string will be saved in the ring buffer content.
Do all the validation of strings in the ring buffer at boot in
test_event_printk(), and make sure that the field of the strings that
point into the kernel are accessible. This will allow adding checks at
runtime that will validate the fields themselves and not rely on paring
the TP_printk() format at runtime.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.685917008@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 917110481f6bc1c96b1e54b62bb114137fbc6d17 upstream.
The process_pointer() helper function looks to see if various trace event
macros are used. These macros are for storing data in the event. This
makes it safe to dereference as the dereference will then point into the
event on the ring buffer where the content of the data stays with the
event itself.
A few helper functions were missing. Those were:
__get_rel_dynamic_array()
__get_dynamic_array_len()
__get_rel_dynamic_array_len()
__get_rel_sockaddr()
Also add a helper function find_print_string() to not need to use a middle
man variable to test if the string exists.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.521836792@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a6629626c584200daf495cc9a740048b455addcd upstream.
The test_event_printk() analyzes print formats of trace events looking for
cases where it may dereference a pointer that is not in the ring buffer
which can possibly be a bug when the trace event is read from the ring
buffer and the content of that pointer no longer exists.
The function needs to accurately go from one print format argument to the
next. It handles quotes and parenthesis that may be included in an
argument. When it finds the start of the next argument, it uses a simple
"c = strstr(fmt + i, ',')" to find the end of that argument!
In order to include "%s" dereferencing, it needs to process the entire
content of the print format argument and not just the content of the first
',' it finds. As there may be content like:
({ const char *saved_ptr = trace_seq_buffer_ptr(p); static const char
*access_str[] = { "---", "--x", "w--", "w-x", "-u-", "-ux", "wu-", "wux"
}; union kvm_mmu_page_role role; role.word = REC->role;
trace_seq_printf(p, "sp gen %u gfn %llx l%u %u-byte q%u%s %s%s" " %snxe
%sad root %u %s%c", REC->mmu_valid_gen, REC->gfn, role.level,
role.has_4_byte_gpte ? 4 : 8, role.quadrant, role.direct ? " direct" : "",
access_str[role.access], role.invalid ? " invalid" : "", role.efer_nx ? ""
: "!", role.ad_disabled ? "!" : "", REC->root_count, REC->unsync ?
"unsync" : "sync", 0); saved_ptr; })
Which is an example of a full argument of an existing event. As the code
already handles finding the next print format argument, process the
argument at the end of it and not the start of it. This way it has both
the start of the argument as well as the end of it.
Add a helper function "process_pointer()" that will do the processing during
the loop as well as at the end. It also makes the code cleaner and easier
to read.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.362271189@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b022f0c7e4 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
avoids checking number_of_same_symbols() for module symbol in
__trace_kprobe_create(), but create_local_trace_kprobe() should avoid this
check too. Doing this check leads to ENOENT for module_name:symbol_name
constructions passed over perf_event_open.
No bug in newer kernels as it was fixed more generally by
commit 9d8616034f16 ("tracing/kprobes: Add symbol counting check when module loads")
Link: https://lore.kernel.org/linux-trace-kernel/20240705161030.b3ddb33a8167013b9b1da202@kernel.org
Fixes: b022f0c7e4 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
Signed-off-by: Nikolay Kuratov <kniv@yandex-team.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 978c4486cca5c7b9253d3ab98a88c8e769cb9bbd upstream.
Syzbot reported [1] crash that happens for following tracing scenario:
- create tracepoint perf event with attr.inherit=1, attach it to the
process and set bpf program to it
- attached process forks -> chid creates inherited event
the new child event shares the parent's bpf program and tp_event
(hence prog_array) which is global for tracepoint
- exit both process and its child -> release both events
- first perf_event_detach_bpf_prog call will release tp_event->prog_array
and second perf_event_detach_bpf_prog will crash, because
tp_event->prog_array is NULL
The fix makes sure the perf_event_detach_bpf_prog checks prog_array
is valid before it tries to remove the bpf program from it.
[1] https://lore.kernel.org/bpf/Z1MR6dCIKajNS6nU@krava/T/#m91dbf0688221ec7a7fc95e896a7ef9ff93b0b8ad
Fixes: 0ee288e69d03 ("bpf,perf: Fix perf_event_detach_bpf_prog error handling")
Reported-by: syzbot+2e0d2840414ce817aaac@syzkaller.appspotmail.com
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241208142507.1207698-1-jolsa@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7d0d673627e20cfa3b21a829a896ce03b58a4f1c upstream.
Currently, the pointer stored in call->prog_array is loaded in
__uprobe_perf_func(), with no RCU annotation and no immediately visible
RCU protection, so it looks as if the loaded pointer can immediately be
dangling.
Later, bpf_prog_run_array_uprobe() starts a RCU-trace read-side critical
section, but this is too late. It then uses rcu_dereference_check(), but
this use of rcu_dereference_check() does not actually dereference anything.
Fix it by aligning the semantics to bpf_prog_run_array(): Let the caller
provide rcu_read_lock_trace() protection and then load call->prog_array
with rcu_dereference_check().
This issue seems to be theoretical: I don't know of any way to reach this
code without having handle_swbp() further up the stack, which is already
holding a rcu_read_lock_trace() lock, so where we take
rcu_read_lock_trace() in __uprobe_perf_func()/bpf_prog_run_array_uprobe()
doesn't actually have any effect.
Fixes: 8c7dcb84e3 ("bpf: implement sleepable uprobes by chaining gps")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241210-bpf-fix-uprobe-uaf-v4-1-5fc8959b2b74@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ef1b808e3b7c98612feceedf985c2fbbeb28f956 upstream.
Uprobes always use bpf_prog_run_array_uprobe() under tasks-trace-RCU
protection. But it is possible to attach a non-sleepable BPF program to a
uprobe, and non-sleepable BPF programs are freed via normal RCU (see
__bpf_prog_put_noref()). This leads to UAF of the bpf_prog because a normal
RCU grace period does not imply a tasks-trace-RCU grace period.
Fix it by explicitly waiting for a tasks-trace-RCU grace period after
removing the attachment of a bpf_prog to a perf_event.
Fixes: 8c7dcb84e3 ("bpf: implement sleepable uprobes by chaining gps")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/bpf/20241210-bpf-fix-actual-uprobe-uaf-v1-1-19439849dd44@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>