[ Upstream commit 63e2f40c9e3187641afacde4153f54b3ee4dbc8c ]
My earlier fix missed an incorrect function prototype that shows up on
native 32-bit builds:
In file included from fs/notify/fanotify/fanotify_user.c:14:
include/linux/syscalls.h:248:25: error: conflicting types for 'sys_fanotify_mark'; have 'long int(int, unsigned int, u32, u32, int, const char *)' {aka 'long int(int, unsigned int, unsigned int, unsigned int, int, const char *)'}
1924 | SYSCALL32_DEFINE6(fanotify_mark,
| ^~~~~~~~~~~~~~~~~
include/linux/syscalls.h:862:17: note: previous declaration of 'sys_fanotify_mark' with type 'long int(int, unsigned int, u64, int, const char *)' {aka 'long int(int, unsigned int, long long unsigned int, int, const char *)'}
On x86 and powerpc, the prototype is also wrong but hidden in an #ifdef,
so it never caused problems.
Add another alternative declaration that matches the conditional function
definition.
Fixes: 403f17a33073 ("parisc: use generic sys_fanotify_mark implementation")
Cc: stable@vger.kernel.org
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4b8e88e563b5f666446d002ad0dc1e6e8e7102b0 upstream.
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake.
Fixes: 3f6d078d4a ("fix compat truncate/ftruncate")
Reviewed-by: Christian Brauner <brauner@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 56062d60f117dccfb5281869e0ab61e090baf864 upstream.
Presently ia32 registers stored in ptregs are unconditionally cast to
unsigned int by the ia32 stub. They are then cast to long when passed to
__se_sys*, but will not be sign extended.
This takes the sign of the syscall argument into account in the ia32
stub. It still casts to unsigned int to avoid implementation specific
behavior. However then casts to int or unsigned int as necessary. So that
the following cast to long sign extends the value.
This fixes the io_pgetevents02 LTP test when compiled with -m32. Presently
the systemcall io_pgetevents_time64() unexpectedly accepts -1 for the
maximum number of events.
It doesn't appear other systemcalls with signed arguments are effected
because they all have compat variants defined and wired up.
Fixes: ebeb8c82ff ("syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240110130122.3836513-1-nik.borisov@suse.com
Link: https://lore.kernel.org/ltp/20210921130127.24131-1-rpalethorpe@suse.com/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
Pull core entry code update from Thomas Gleixner:
"A single update to the core entry code, which removes the empty user
address limit check which is a leftover of the removed TIF_FSCHECK"
* tag 'core-entry-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
entry: Remove empty addr_limit_user_check()
Back when set_fs() was a generic API for altering the address limit,
addr_limit_user_check() was a safety measure to prevent userspace being
able to issue syscalls with an unbound limit.
With the the removal of set_fs() as a generic API, the last user of
addr_limit_user_check() was removed in commit:
b5a5a01d8e ("arm64: uaccess: remove addr_limit_user_check()")
... as since that commit, no architecture defines TIF_FSCHECK, and hence
addr_limit_user_check() always expands to nothing.
Remove addr_limit_user_check(), updating the comment in
exit_to_user_mode_prepare() to no longer refer to it. At the same time,
the comment is reworded to be a little more generic so as to cover
kmap_assert_nomap() in addition to lockdep_sys_exit().
No functional change.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230821163526.2319443-1-mark.rutland@arm.com
When operating with shadow stacks enabled, the kernel will automatically
allocate shadow stacks for new threads, however in some cases userspace
will need additional shadow stacks. The main example of this is the
ucontext family of functions, which require userspace allocating and
pivoting to userspace managed stacks.
Unlike most other user memory permissions, shadow stacks need to be
provisioned with special data in order to be useful. They need to be setup
with a restore token so that userspace can pivot to them via the RSTORSSP
instruction. But, the security design of shadow stacks is that they
should not be written to except in limited circumstances. This presents a
problem for userspace, as to how userspace can provision this special
data, without allowing for the shadow stack to be generally writable.
Previously, a new PROT_SHADOW_STACK was attempted, which could be
mprotect()ed from RW permissions after the data was provisioned. This was
found to not be secure enough, as other threads could write to the
shadow stack during the writable window.
The kernel can use a special instruction, WRUSS, to write directly to
userspace shadow stacks. So the solution can be that memory can be mapped
as shadow stack permissions from the beginning (never generally writable
in userspace), and the kernel itself can write the restore token.
First, a new madvise() flag was explored, which could operate on the
PROT_SHADOW_STACK memory. This had a couple of downsides:
1. Extra checks were needed in mprotect() to prevent writable memory from
ever becoming PROT_SHADOW_STACK.
2. Extra checks/vma state were needed in the new madvise() to prevent
restore tokens being written into the middle of pre-used shadow stacks.
It is ideal to prevent restore tokens being added at arbitrary
locations, so the check was to make sure the shadow stack had never been
written to.
3. It stood out from the rest of the madvise flags, as more of direct
action than a hint at future desired behavior.
So rather than repurpose two existing syscalls (mmap, madvise) that don't
quite fit, just implement a new map_shadow_stack syscall to allow
userspace to map and setup new shadow stacks in one step. While ucontext
is the primary motivator, userspace may have other unforeseen reasons to
setup its own shadow stacks using the WRSS instruction. Towards this
provide a flag so that stacks can be optionally setup securely for the
common case of ucontext without enabling WRSS. Or potentially have the
kernel set up the shadow stack in some new way.
The following example demonstrates how to create a new shadow stack with
map_shadow_stack:
void *shstk = map_shadow_stack(addr, stack_size, SHADOW_STACK_SET_TOKEN);
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-35-rick.p.edgecombe%40intel.com
Pull asm-generic updates from Arnd Bergmann:
"These are cleanups for architecture specific header files:
- the comments in include/linux/syscalls.h have gone out of sync and
are really pointless, so these get removed
- The asm/bitsperlong.h header no longer needs to be architecture
specific on modern compilers, so use a generic version for newer
architectures that use new enough userspace compilers
- A cleanup for virt_to_pfn/virt_to_bus to have proper type checking,
forcing the use of pointers"
* tag 'asm-generic-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
syscalls: Remove file path comments from headers
tools arch: Remove uapi bitsperlong.h of hexagon and microblaze
asm-generic: Unify uapi bitsperlong.h for arm64, riscv and loongarch
m68k/mm: Make pfn accessors static inlines
arm64: memory: Make virt_to_pfn() a static inline
ARM: mm: Make virt_to_pfn() a static inline
asm-generic/page.h: Make pfn accessors static inlines
xen/netback: Pass (void *) to virt_to_page()
netfs: Pass a pointer to virt_to_page()
cifs: Pass a pointer to virt_to_page() in cifsglob
cifs: Pass a pointer to virt_to_page()
riscv: mm: init: Pass a pointer to virt_to_page()
ARC: init: Pass a pointer to virt_to_pfn() in init
m68k: Pass a pointer to virt_to_pfn() virt_to_page()
fs/proc/kcore.c: Pass a pointer to virt_addr_valid()
Pull mm updates from Andrew Morton:
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs
- Yosry has also eliminated cgroup's atomic rstat flushing
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning
- Lorenzo Stoakes has done some maintanance work on the
get_user_pages() interface
- Liam Howlett continues with cleanups and maintenance work to the
maple tree code. Peng Zhang also does some work on maple tree
- Johannes Weiner has done some cleanup work on the compaction code
- David Hildenbrand has contributed additional selftests for
get_user_pages()
- Thomas Gleixner has contributed some maintenance and optimization
work for the vmalloc code
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting
- Christoph Hellwig has some cleanups for the filemap/directio code
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the
provided APIs rather than open-coding accesses
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings
- John Hubbard has a series of fixes to the MM selftesting code
- ZhangPeng continues the folio conversion campaign
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
from 128 to 8
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code
- Vishal Moola also has done some folio conversion work
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch
* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
mm/hugetlb: remove hugetlb_set_page_subpool()
mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
hugetlb: revert use of page_cache_next_miss()
Revert "page cache: fix page_cache_next/prev_miss off by one"
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
mm: memcg: rename and document global_reclaim()
mm: kill [add|del]_page_to_lru_list()
mm: compaction: convert to use a folio in isolate_migratepages_block()
mm: zswap: fix double invalidate with exclusive loads
mm: remove unnecessary pagevec includes
mm: remove references to pagevec
mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
mm: remove struct pagevec
net: convert sunrpc from pagevec to folio_batch
i915: convert i915_gpu_error to use a folio_batch
pagevec: rename fbatch_count()
mm: remove check_move_unevictable_pages()
drm: convert drm_gem_put_pages() to use a folio_batch
i915: convert shmem_sg_free_table() to use a folio_batch
scatterlist: add sg_set_folio()
...
Source file locations for syscall definitions can change over a period
of time. File paths in comments get stale and are hard to maintain long
term. Also, their usefulness is questionable since it would be easier to
locate a syscall definition using the SYSCALL_DEFINEx() macro.
Remove all source file path comments from the syscall headers. Also,
equalize the uneven line spacing (some of which is introduced due to the
deletions).
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The sys_ni_posix_timers() definition causes a warning when the declaration
is missing, so this needs to be added along with the normal syscalls,
outside of the #ifdef.
kernel/time/posix-stubs.c:26:17: error: no previous prototype for 'sys_ni_posix_timers' [-Werror=missing-prototypes]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230607142925.3126422-1-arnd@kernel.org
There is currently no good way to query the page cache state of large file
sets and directory trees. There is mincore(), but it scales poorly: the
kernel writes out a lot of bitmap data that userspace has to aggregate,
when the user really doesn not care about per-page information in that
case. The user also needs to mmap and unmap each file as it goes along,
which can be quite slow as well.
Some use cases where this information could come in handy:
* Allowing database to decide whether to perform an index scan or
direct table queries based on the in-memory cache state of the
index.
* Visibility into the writeback algorithm, for performance issues
diagnostic.
* Workload-aware writeback pacing: estimating IO fulfilled by page
cache (and IO to be done) within a range of a file, allowing for
more frequent syncing when and where there is IO capacity, and
batching when there is not.
* Computing memory usage of large files/directory trees, analogous to
the du tool for disk usage.
More information about these use cases could be found in the following
thread:
https://lore.kernel.org/lkml/20230315170934.GA97793@cmpxchg.org/
This patch implements a new syscall that queries cache state of a file and
summarizes the number of cached pages, number of dirty pages, number of
pages marked for writeback, number of (recently) evicted pages, etc. in a
given range. Currently, the syscall is only wired in for x86
architecture.
NAME
cachestat - query the page cache statistics of a file.
SYNOPSIS
#include <sys/mman.h>
struct cachestat_range {
__u64 off;
__u64 len;
};
struct cachestat {
__u64 nr_cache;
__u64 nr_dirty;
__u64 nr_writeback;
__u64 nr_evicted;
__u64 nr_recently_evicted;
};
int cachestat(unsigned int fd, struct cachestat_range *cstat_range,
struct cachestat *cstat, unsigned int flags);
DESCRIPTION
cachestat() queries the number of cached pages, number of dirty
pages, number of pages marked for writeback, number of evicted
pages, number of recently evicted pages, in the bytes range given by
`off` and `len`.
An evicted page is a page that is previously in the page cache but
has been evicted since. A page is recently evicted if its last
eviction was recent enough that its reentry to the cache would
indicate that it is actively being used by the system, and that
there is memory pressure on the system.
These values are returned in a cachestat struct, whose address is
given by the `cstat` argument.
The `off` and `len` arguments must be non-negative integers. If
`len` > 0, the queried range is [`off`, `off` + `len`]. If `len` ==
0, we will query in the range from `off` to the end of the file.
The `flags` argument is unused for now, but is included for future
extensibility. User should pass 0 (i.e no flag specified).
Currently, hugetlbfs is not supported.
Because the status of a page can change after cachestat() checks it
but before it returns to the application, the returned values may
contain stale information.
RETURN VALUE
On success, cachestat returns 0. On error, -1 is returned, and errno
is set to indicate the error.
ERRORS
EFAULT cstat or cstat_args points to an invalid address.
EINVAL invalid flags.
EBADF invalid file descriptor.
EOPNOTSUPP file descriptor is of a hugetlbfs file
[nphamcs@gmail.com: replace rounddown logic with the existing helper]
Link: https://lkml.kernel.org/r/20230504022044.3675469-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20230503013608.2431726-3-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are no remaining callers of set_fs(), so CONFIG_SET_FS
can be removed globally, along with the thread_info field and
any references to it.
This turns access_ok() into a cheaper check against TASK_SIZE_MAX.
As CONFIG_SET_FS is now gone, drop all remaining references to
set_fs()/get_fs(), mm_segment_t, user_addr_max() and uaccess_kernel().
Acked-by: Sam Ravnborg <sam@ravnborg.org> # for sparc32 changes
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Tested-by: Sergey Matyukevich <sergey.matyukevich@synopsys.com> # for arc changes
Acked-by: Stafford Horne <shorne@gmail.com> # [openrisc, asm-generic]
Acked-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Add support to wait on multiple futexes. This is the interface
implemented by this syscall:
futex_waitv(struct futex_waitv *waiters, unsigned int nr_futexes,
unsigned int flags, struct timespec *timeout, clockid_t clockid)
struct futex_waitv {
__u64 val;
__u64 uaddr;
__u32 flags;
__u32 __reserved;
};
Given an array of struct futex_waitv, wait on each uaddr. The thread
wakes if a futex_wake() is performed at any uaddr. The syscall returns
immediately if any waiter has *uaddr != val. *timeout is an optional
absolute timeout value for the operation. This syscall supports only
64bit sized timeout structs. The flags argument of the syscall should be
empty, but it can be used for future extensions. Flags for shared
futexes, sizes, etc. should be used on the individual flags of each
waiter.
__reserved is used for explicit padding and should be 0, but it might be
used for future extensions. If the userspace uses 32-bit pointers, it
should make sure to explicitly cast it when assigning to waitv::uaddr.
Returns the array index of one of the woken futexes. There’s no given
information of how many were woken, or any particular attribute of it
(if it’s the first woken, if it is of the smaller index...).
Signed-off-by: André Almeida <andrealmeid@collabora.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210923171111.300673-17-andrealmeid@collabora.com
Merge misc updates from Andrew Morton:
"173 patches.
Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
oom-kill, migration, ksm, percpu, vmstat, and madvise)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
mm/madvise: add MADV_WILLNEED to process_madvise()
mm/vmstat: remove unneeded return value
mm/vmstat: simplify the array size calculation
mm/vmstat: correct some wrong comments
mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
selftests: vm: add COW time test for KSM pages
selftests: vm: add KSM merging time test
mm: KSM: fix data type
selftests: vm: add KSM merging across nodes test
selftests: vm: add KSM zero page merging test
selftests: vm: add KSM unmerge test
selftests: vm: add KSM merge test
mm/migrate: correct kernel-doc notation
mm: wire up syscall process_mrelease
mm: introduce process_mrelease system call
memblock: make memblock_find_in_range method private
mm/mempolicy.c: use in_task() in mempolicy_slab_node()
mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
mm/mempolicy: advertise new MPOL_PREFERRED_MANY
mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
...
sys_oabi_semtimedop() is one of the last users of set_fs() on Arm. To
remove this one, expose the internal code of the actual implementation
that operates on a kernel pointer and call it directly after copying.
There should be no measurable impact on the normal execution of this
function, and it makes the overly long function a little shorter, which
may help readability.
While reworking the oabi version, make it behave a little more like
the native one, using kvmalloc_array() and restructure the code
flow in a similar way.
The naming of __do_semtimedop() is not very good, I hope someone can
come up with a better name.
One regression was spotted by kernel test robot <rong.a.chen@intel.com>
and fixed before the first mailing list submission.
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>