Factor out vfs_parse_monolithic_sep() from generic_parse_monolithic(),
so filesystems could use it with a custom option separator callback.
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Pull superblock updates from Christian Brauner:
"This contains the super rework that was ready for this cycle. The
first part changes the order of how we open block devices and allocate
superblocks, contains various cleanups, simplifications, and a new
mechanism to wait on superblock state changes.
This unblocks work to ultimately limit the number of writers to a
block device. Jan has already scheduled follow-up work that will be
ready for v6.7 and allows us to restrict the number of writers to a
given block device. That series builds on this work right here.
The second part contains filesystem freezing updates.
Overview:
The generic superblock changes are rougly organized as follows
(ignoring additional minor cleanups):
(1) Removal of the bd_super member from struct block_device.
This was a very odd back pointer to struct super_block with
unclear rules. For all relevant places we have other means to get
the same information so just get rid of this.
(2) Simplify rules for superblock cleanup.
Roughly, everything that is allocated during fs_context
initialization and that's stored in fs_context->s_fs_info needs
to be cleaned up by the fs_context->free() implementation before
the superblock allocation function has been called successfully.
After sget_fc() returned fs_context->s_fs_info has been
transferred to sb->s_fs_info at which point sb->kill_sb() if
fully responsible for cleanup. Adhering to these rules means that
cleanup of sb->s_fs_info in fill_super() is to be avoided as it's
brittle and inconsistent.
Cleanup shouldn't be duplicated between sb->put_super() as
sb->put_super() is only called if sb->s_root has been set aka
when the filesystem has been successfully born (SB_BORN). That
complexity should be avoided.
This also means that block devices are to be closed in
sb->kill_sb() instead of sb->put_super(). More details in the
lower section.
(3) Make it possible to lookup or create a superblock before opening
block devices
There's a subtle dependency on (2) as some filesystems did rely
on fill_super() to be called in order to correctly clean up
sb->s_fs_info. All these filesystems have been fixed.
(4) Switch most filesystem to follow the same logic as the generic
mount code now does as outlined in (3).
(5) Use the superblock as the holder of the block device. We can now
easily go back from block device to owning superblock.
(6) Export and extend the generic fs_holder_ops and use them as
holder ops everywhere and remove the filesystem specific holder
ops.
(7) Call from the block layer up into the filesystem layer when the
block device is removed, allowing to shut down the filesystem
without risk of deadlocks.
(8) Get rid of get_super().
We can now easily go back from the block device to owning
superblock and can call up from the block layer into the
filesystem layer when the device is removed. So no need to wade
through all registered superblock to find the owning superblock
anymore"
Link: https://lore.kernel.org/lkml/20230824-prall-intakt-95dbffdee4a0@brauner/
* tag 'v6.6-vfs.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (47 commits)
super: use higher-level helper for {freeze,thaw}
super: wait until we passed kill super
super: wait for nascent superblocks
super: make locking naming consistent
super: use locking helpers
fs: simplify invalidate_inodes
fs: remove get_super
block: call into the file system for ioctl BLKFLSBUF
block: call into the file system for bdev_mark_dead
block: consolidate __invalidate_device and fsync_bdev
block: drop the "busy inodes on changed media" log message
dasd: also call __invalidate_device when setting the device offline
amiflop: don't call fsync_bdev in FDFMTBEG
floppy: call disk_force_media_change when changing the format
block: simplify the disk_force_media_change interface
nbd: call blk_mark_disk_dead in nbd_clear_sock_ioctl
xfs use fs_holder_ops for the log and RT devices
xfs: drop s_umount over opening the log and RT devices
ext4: use fs_holder_ops for the log device
ext4: drop s_umount over opening the log device
...
Summary
=======
This introduces FSCONFIG_CMD_CREATE_EXCL which will allows userspace to
implement something like mount -t ext4 --exclusive /dev/sda /B which
fails if a superblock for the requested filesystem does already exist:
Before this patch
-----------------
$ sudo ./move-mount -f xfs -o source=/dev/sda4 /A
Requesting filesystem type xfs
Mount options requested: source=/dev/sda4
Attaching mount at /A
Moving single attached mount
Setting key(source) with val(/dev/sda4)
$ sudo ./move-mount -f xfs -o source=/dev/sda4 /B
Requesting filesystem type xfs
Mount options requested: source=/dev/sda4
Attaching mount at /B
Moving single attached mount
Setting key(source) with val(/dev/sda4)
After this patch with --exclusive as a switch for FSCONFIG_CMD_CREATE_EXCL
--------------------------------------------------------------------------
$ sudo ./move-mount -f xfs --exclusive -o source=/dev/sda4 /A
Requesting filesystem type xfs
Request exclusive superblock creation
Mount options requested: source=/dev/sda4
Attaching mount at /A
Moving single attached mount
Setting key(source) with val(/dev/sda4)
$ sudo ./move-mount -f xfs --exclusive -o source=/dev/sda4 /B
Requesting filesystem type xfs
Request exclusive superblock creation
Mount options requested: source=/dev/sda4
Attaching mount at /B
Moving single attached mount
Setting key(source) with val(/dev/sda4)
Device or resource busy | move-mount.c: 300: do_fsconfig: i xfs: reusing existing filesystem not allowed
Details
=======
As mentioned on the list (cf. [1]-[3]) mount requests like
mount -t ext4 /dev/sda /A are ambigous for userspace. Either a new
superblock has been created and mounted or an existing superblock has
been reused and a bind-mount has been created.
This becomes clear in the following example where two processes create
the same mount for the same block device:
P1 P2
fd_fs = fsopen("ext4"); fd_fs = fsopen("ext4");
fsconfig(fd_fs, FSCONFIG_SET_STRING, "source", "/dev/sda"); fsconfig(fd_fs, FSCONFIG_SET_STRING, "source", "/dev/sda");
fsconfig(fd_fs, FSCONFIG_SET_STRING, "dax", "always"); fsconfig(fd_fs, FSCONFIG_SET_STRING, "resuid", "1000");
// wins and creates superblock
fsconfig(fd_fs, FSCONFIG_CMD_CREATE, ...)
// finds compatible superblock of P1
// spins until P1 sets SB_BORN and grabs a reference
fsconfig(fd_fs, FSCONFIG_CMD_CREATE, ...)
fd_mnt1 = fsmount(fd_fs); fd_mnt2 = fsmount(fd_fs);
move_mount(fd_mnt1, "/A") move_mount(fd_mnt2, "/B")
Not just does P2 get a bind-mount but the mount options that P2
requestes are silently ignored. The VFS itself doesn't, can't and
shouldn't enforce filesystem specific mount option compatibility. It
only enforces incompatibility for read-only <-> read-write transitions:
mount -t ext4 /dev/sda /A
mount -t ext4 -o ro /dev/sda /B
The read-only request will fail with EBUSY as the VFS can't just
silently transition a superblock from read-write to read-only or vica
versa without risking security issues.
To userspace this silent superblock reuse can become a security issue in
because there is currently no straightforward way for userspace to know
that they did indeed manage to create a new superblock and didn't just
reuse an existing one.
This adds a new FSCONFIG_CMD_CREATE_EXCL command to fsconfig() that
returns EBUSY if an existing superblock would be reused. Userspace that
needs to be sure that it did create a new superblock with the requested
mount options can request superblock creation using this command. If the
command succeeds they can be sure that they did create a new superblock
with the requested mount options.
This requires the new mount api. With the old mount api it would be
necessary to plumb this through every legacy filesystem's
file_system_type->mount() method. If they want this feature they are
most welcome to switch to the new mount api.
Following is an analysis of the effect of FSCONFIG_CMD_CREATE_EXCL on
each high-level superblock creation helper:
(1) get_tree_nodev()
Always allocate new superblock. Hence, FSCONFIG_CMD_CREATE and
FSCONFIG_CMD_CREATE_EXCL are equivalent.
The binderfs or overlayfs filesystems are examples.
(4) get_tree_keyed()
Finds an existing superblock based on sb->s_fs_info. Hence,
FSCONFIG_CMD_CREATE would reuse an existing superblock whereas
FSCONFIG_CMD_CREATE_EXCL would reject it with EBUSY.
The mqueue or nfsd filesystems are examples.
(2) get_tree_bdev()
This effectively works like get_tree_keyed().
The ext4 or xfs filesystems are examples.
(3) get_tree_single()
Only one superblock of this filesystem type can ever exist.
Hence, FSCONFIG_CMD_CREATE would reuse an existing superblock
whereas FSCONFIG_CMD_CREATE_EXCL would reject it with EBUSY.
The securityfs or configfs filesystems are examples.
Note that some single-instance filesystems never destroy the
superblock once it has been created during the first mount. For
example, if securityfs has been mounted at least onces then the
created superblock will never be destroyed again as long as there is
still an LSM making use it. Consequently, even if securityfs is
unmounted and the superblock seemingly destroyed it really isn't
which means that FSCONFIG_CMD_CREATE_EXCL will continue rejecting
reusing an existing superblock.
This is acceptable thugh since special purpose filesystems such as
this shouldn't have a need to use FSCONFIG_CMD_CREATE_EXCL anyway
and if they do it's probably to make sure that mount options aren't
ignored.
Following is an analysis of the effect of FSCONFIG_CMD_CREATE_EXCL on
filesystems that make use of the low-level sget_fc() helper directly.
They're all effectively variants on get_tree_keyed(), get_tree_bdev(),
or get_tree_nodev():
(5) mtd_get_sb()
Similar logic to get_tree_keyed().
(6) afs_get_tree()
Similar logic to get_tree_keyed().
(7) ceph_get_tree()
Similar logic to get_tree_keyed().
Already explicitly allows forcing the allocation of a new superblock
via CEPH_OPT_NOSHARE. This turns it into get_tree_nodev().
(8) fuse_get_tree_submount()
Similar logic to get_tree_nodev().
(9) fuse_get_tree()
Forces reuse of existing FUSE superblock.
Forces reuse of existing superblock if passed in file refers to an
existing FUSE connection.
If FSCONFIG_CMD_CREATE_EXCL is specified together with an fd
referring to an existing FUSE connections this would cause the
superblock reusal to fail. If reusing is the intent then
FSCONFIG_CMD_CREATE_EXCL shouldn't be specified.
(10) fuse_get_tree()
-> get_tree_nodev()
Same logic as in get_tree_nodev().
(11) fuse_get_tree()
-> get_tree_bdev()
Same logic as in get_tree_bdev().
(12) virtio_fs_get_tree()
Same logic as get_tree_keyed().
(13) gfs2_meta_get_tree()
Forces reuse of existing gfs2 superblock.
Mounting gfs2meta enforces that a gf2s superblock must already
exist. If not, it will error out. Consequently, mounting gfs2meta
with FSCONFIG_CMD_CREATE_EXCL would always fail. If reusing is the
intent then FSCONFIG_CMD_CREATE_EXCL shouldn't be specified.
(14) kernfs_get_tree()
Similar logic to get_tree_keyed().
(15) nfs_get_tree_common()
Similar logic to get_tree_keyed().
Already explicitly allows forcing the allocation of a new superblock
via NFS_MOUNT_UNSHARED. This effectively turns it into
get_tree_nodev().
Link: [1] https://lore.kernel.org/linux-block/20230704-fasching-wertarbeit-7c6ffb01c83d@brauner
Link: [2] https://lore.kernel.org/linux-block/20230705-pumpwerk-vielversprechend-a4b1fd947b65@brauner
Link: [3] https://lore.kernel.org/linux-fsdevel/20230725-einnahmen-warnschilder-17779aec0a97@brauner
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Aleksa Sarai <cyphar@cyphar.com>
Message-Id: <20230802-vfs-super-exclusive-v2-4-95dc4e41b870@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
This isn't ever used by VFS now, and it couldn't even work. Any FS that
uses the SECURITY_LSM_NATIVE_LABELS flag needs to also process the
value returned back from the LSM, so it needs to do its
security_sb_set_mnt_opts() call on its own anyway.
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Pull lsm updates from Paul Moore:
- Improve the error handling in the device cgroup such that memory
allocation failures when updating the access policy do not
potentially alter the policy.
- Some minor fixes to reiserfs to ensure that it properly releases
LSM-related xattr values.
- Update the security_socket_getpeersec_stream() LSM hook to take
sockptr_t values.
Previously the net/BPF folks updated the getsockopt code in the
network stack to leverage the sockptr_t type to make it easier to
pass both kernel and __user pointers, but unfortunately when they did
so they didn't convert the LSM hook.
While there was/is no immediate risk by not converting the LSM hook,
it seems like this is a mistake waiting to happen so this patch
proactively does the LSM hook conversion.
- Convert vfs_getxattr_alloc() to return an int instead of a ssize_t
and cleanup the callers. Internally the function was never going to
return anything larger than an int and the callers were doing some
very odd things casting the return value; this patch fixes all that
and helps bring a bit of sanity to vfs_getxattr_alloc() and its
callers.
- More verbose, and helpful, LSM debug output when the system is booted
with "lsm.debug" on the command line. There are examples in the
commit description, but the quick summary is that this patch provides
better information about which LSMs are enabled and the ordering in
which they are processed.
- General comment and kernel-doc fixes and cleanups.
* tag 'lsm-pr-20221212' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm:
lsm: Fix description of fs_context_parse_param
lsm: Add/fix return values in lsm_hooks.h and fix formatting
lsm: Clarify documentation of vm_enough_memory hook
reiserfs: Add missing calls to reiserfs_security_free()
lsm,fs: fix vfs_getxattr_alloc() return type and caller error paths
device_cgroup: Roll back to original exceptions after copy failure
LSM: Better reporting of actual LSMs at boot
lsm: make security_socket_getpeersec_stream() sockptr_t safe
audit: Fix some kernel-doc warnings
lsm: remove obsoleted comments for security hooks
fs: edit a comment made in bad taste
Remove the pointless keying argument and associated enum and pass the
fill_super callback and a "bool reconf" instead. Also mark the function
static given that there are no users outside of super.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
I know nobody likes a buzzkill, but I figure it's best to keep the
bad jokes appropriate for small children.
Signed-off-by: Paul Moore <paul@paul-moore.com>
Prior to Linux v5.4 devtmpfs used mount_single() which treats the given
mount options as "remount" options, so it updates the configuration of
the single super_block on each mount.
Since that was changed, the mount options used for devtmpfs are ignored.
This is a regression which affect systemd - which mounts devtmpfs with
"-o mode=755,size=4m,nr_inodes=1m".
This patch restores the "remount" effect by calling reconfigure_single()
Fixes: d401727ea0 ("devtmpfs: don't mix {ramfs,shmem}_fill_super() with mount_single()")
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Richard reported sporadic (roughly one in 10 or so) null dereferences and
other strange behaviour for a set of automated LTP tests. Things like:
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014
RIP: 0010:kernfs_sop_show_path+0x1b/0x60
...or these others:
RIP: 0010:do_mkdirat+0x6a/0xf0
RIP: 0010:d_alloc_parallel+0x98/0x510
RIP: 0010:do_readlinkat+0x86/0x120
There were other less common instances of some kind of a general scribble
but the common theme was mount and cgroup and a dubious dentry triggering
the NULL dereference. I was only able to reproduce it under qemu by
replicating Richard's setup as closely as possible - I never did get it
to happen on bare metal, even while keeping everything else the same.
In commit 71d883c37e ("cgroup_do_mount(): massage calling conventions")
we see this as a part of the overall change:
--------------
struct cgroup_subsys *ss;
- struct dentry *dentry;
[...]
- dentry = cgroup_do_mount(&cgroup_fs_type, fc->sb_flags, root,
- CGROUP_SUPER_MAGIC, ns);
[...]
- if (percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
- struct super_block *sb = dentry->d_sb;
- dput(dentry);
+ ret = cgroup_do_mount(fc, CGROUP_SUPER_MAGIC, ns);
+ if (!ret && percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
+ struct super_block *sb = fc->root->d_sb;
+ dput(fc->root);
deactivate_locked_super(sb);
msleep(10);
return restart_syscall();
}
--------------
In changing from the local "*dentry" variable to using fc->root, we now
export/leave that dentry pointer in the file context after doing the dput()
in the unlikely "is_dying" case. With LTP doing a crazy amount of back to
back mount/unmount [testcases/bin/cgroup_regression_5_1.sh] the unlikely
becomes slightly likely and then bad things happen.
A fix would be to not leave the stale reference in fc->root as follows:
--------------
                dput(fc->root);
+ fc->root = NULL;
                deactivate_locked_super(sb);
--------------
...but then we are just open-coding a duplicate of fc_drop_locked() so we
simply use that instead.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org # v5.1+
Reported-by: Richard Purdie <richard.purdie@linuxfoundation.org>
Fixes: 71d883c37e ("cgroup_do_mount(): massage calling conventions")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Previous patch changed handling of remount/reconfigure to ignore all
options, including those that are unknown to the fuse kernel fs. This was
done for backward compatibility, but this likely only affects the old
mount(2) API.
The new fsconfig(2) based reconfiguration could possibly be improved. This
would make the new API less of a drop in replacement for the old, OTOH this
is a good chance to get rid of some weirdnesses in the old API.
Several other behaviors might make sense:
1) unknown options are rejected, known options are ignored
2) unknown options are rejected, known options are rejected if the value
is changed, allowed otherwise
3) all options are rejected
Prior to the backward compatibility fix to ignore all options all known
options were accepted (1), even if they change the value of a mount
parameter; fuse_reconfigure() does not look at the config values set by
fuse_parse_param().
To fix that we'd need to verify that the value provided is the same as set
in the initial configuration (2). The major drawback is that this is much
more complex than just rejecting all attempts at changing options (3);
i.e. all options signify initial configuration values and don't make sense
on reconfigure.
This patch opts for (3) with the rationale that no mount options are
reconfigurable in fuse.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
... turning it into struct p_log embedded into fs_context. Initialize
the prefix with fs_type->name, turning fs_parse() into a trivial
inline wrapper for __fs_parse().
This makes fs_parameter_description->name completely unused.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fs_parse() analogue taking p_log instead of fs_context.
fs_parse() turned into a wrapper, callers in ceph_common and rbd
switched to __fs_parse().
As the result, fs_parse() never gets NULL fs_context and neither
do fs_context-based logging primitives
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Its behaviour is identical to that of fs_value_is_filename.
It makes no sense, anyway - LOOKUP_EMPTY affects nothing
whatsoever once the pathname has been imported from userland.
And both fs_value_is_filename and fs_value_is_filename_empty
carry an already imported pathname.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull fuse updates from Miklos Szeredi:
- Continue separating the transport (user/kernel communication) and the
filesystem layers of fuse. Getting rid of most layering violations
will allow for easier cleanup and optimization later on.
- Prepare for the addition of the virtio-fs filesystem. The actual
filesystem will be introduced by a separate pull request.
- Convert to new mount API.
- Various fixes, optimizations and cleanups.
* tag 'fuse-update-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: (55 commits)
fuse: Make fuse_args_to_req static
fuse: fix memleak in cuse_channel_open
fuse: fix beyond-end-of-page access in fuse_parse_cache()
fuse: unexport fuse_put_request
fuse: kmemcg account fs data
fuse: on 64-bit store time in d_fsdata directly
fuse: fix missing unlock_page in fuse_writepage()
fuse: reserve byteswapped init opcodes
fuse: allow skipping control interface and forced unmount
fuse: dissociate DESTROY from fuseblk
fuse: delete dentry if timeout is zero
fuse: separate fuse device allocation and installation in fuse_conn
fuse: add fuse_iqueue_ops callbacks
fuse: extract fuse_fill_super_common()
fuse: export fuse_dequeue_forget() function
fuse: export fuse_get_unique()
fuse: export fuse_send_init_request()
fuse: export fuse_len_args()
fuse: export fuse_end_request()
fuse: fix request limit
...
The unused vfs code can be removed. Don't pass empty subtype (same as if
->parse callback isn't called).
The bits that are left involve determining whether it's permitted to split the
filesystem type string passed in to mount(2). Consequently, this means that we
cannot get rid of the FS_HAS_SUBTYPE flag unless we define that a type string
with a dot in it always indicates a subtype specification.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Add an additional keying mode to vfs_get_super() to indicate that only a
single superblock should exist in the system, and that, if it does, further
mounts should invoke reconfiguration upon it.
This allows mount_single() to be replaced.
[Fix by Eric Biggers folded in]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Create a function, get_tree_bdev(), that is fs_context-aware and a
->get_tree() counterpart of mount_bdev().
It caches the block device pointer in the fs_context struct so that this
information can be passed into sget_fc()'s test and set functions.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jens Axboe <axboe@kernel.dk>
cc: linux-block@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>