[ Upstream commit b454abfab52543c44b581afc807b9f97fc1e7a3a ]
The Felix DSA driver presents unique challenges that make the simplistic
ocelot PTP TX timestamping procedure unreliable: any transmitted packet
may be lost in hardware before it ever leaves our local system.
This may happen because there is congestion on the DSA conduit, the
switch CPU port or even user port (Qdiscs like taprio may delay packets
indefinitely by design).
The technical problem is that the kernel, i.e. ocelot_port_add_txtstamp_skb(),
runs out of timestamp IDs eventually, because it never detects that
packets are lost, and keeps the IDs of the lost packets on hold
indefinitely. The manifestation of the issue once the entire timestamp
ID range becomes busy looks like this in dmesg:
mscc_felix 0000:00:00.5: port 0 delivering skb without TX timestamp
mscc_felix 0000:00:00.5: port 1 delivering skb without TX timestamp
At the surface level, we need a timeout timer so that the kernel knows a
timestamp ID is available again. But there is a deeper problem with the
implementation, which is the monotonically increasing ocelot_port->ts_id.
In the presence of packet loss, it will be impossible to detect that and
reuse one of the holes created in the range of free timestamp IDs.
What we actually need is a bitmap of 63 timestamp IDs tracking which one
is available. That is able to use up holes caused by packet loss, but
also gives us a unique opportunity to not implement an actual timer_list
for the timeout timer (very complicated in terms of locking).
We could only declare a timestamp ID stale on demand (lazily), aka when
there's no other timestamp ID available. There are pros and cons to this
approach: the implementation is much more simple than per-packet timers
would be, but most of the stale packets would be quasi-leaked - not
really leaked, but blocked in driver memory, since this algorithm sees
no reason to free them.
An improved technique would be to check for stale timestamp IDs every
time we allocate a new one. Assuming a constant flux of PTP packets,
this avoids stale packets being blocked in memory, but of course,
packets lost at the end of the flux are still blocked until the flux
resumes (nobody left to kick them out).
Since implementing per-packet timers is way too complicated, this should
be good enough.
Testing procedure:
Persistently block traffic class 5 and try to run PTP on it:
$ tc qdisc replace dev swp3 parent root taprio num_tc 8 \
map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 0 sched-entry S 0xdf 100000 flags 0x2
[ 126.948141] mscc_felix 0000:00:00.5: port 3 tc 5 min gate length 0 ns not enough for max frame size 1526 at 1000 Mbps, dropping frames over 1 octets including FCS
$ ptp4l -i swp3 -2 -P -m --socket_priority 5 --fault_reset_interval ASAP --logSyncInterval -3
ptp4l[70.351]: port 1 (swp3): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[70.354]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[70.358]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
[ 70.394583] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[70.406]: timed out while polling for tx timestamp
ptp4l[70.406]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[70.406]: port 1 (swp3): send peer delay response failed
ptp4l[70.407]: port 1 (swp3): clearing fault immediately
ptp4l[70.952]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 71.394858] mscc_felix 0000:00:00.5: port 3 timestamp id 1
ptp4l[71.400]: timed out while polling for tx timestamp
ptp4l[71.400]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[71.401]: port 1 (swp3): send peer delay response failed
ptp4l[71.401]: port 1 (swp3): clearing fault immediately
[ 72.393616] mscc_felix 0000:00:00.5: port 3 timestamp id 2
ptp4l[72.401]: timed out while polling for tx timestamp
ptp4l[72.402]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[72.402]: port 1 (swp3): send peer delay response failed
ptp4l[72.402]: port 1 (swp3): clearing fault immediately
ptp4l[72.952]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 73.395291] mscc_felix 0000:00:00.5: port 3 timestamp id 3
ptp4l[73.400]: timed out while polling for tx timestamp
ptp4l[73.400]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[73.400]: port 1 (swp3): send peer delay response failed
ptp4l[73.400]: port 1 (swp3): clearing fault immediately
[ 74.394282] mscc_felix 0000:00:00.5: port 3 timestamp id 4
ptp4l[74.400]: timed out while polling for tx timestamp
ptp4l[74.401]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[74.401]: port 1 (swp3): send peer delay response failed
ptp4l[74.401]: port 1 (swp3): clearing fault immediately
ptp4l[74.953]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 75.396830] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 0 which seems lost
[ 75.405760] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[75.410]: timed out while polling for tx timestamp
ptp4l[75.411]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[75.411]: port 1 (swp3): send peer delay response failed
ptp4l[75.411]: port 1 (swp3): clearing fault immediately
(...)
Remove the blocking condition and see that the port recovers:
$ same tc command as above, but use "sched-entry S 0xff" instead
$ same ptp4l command as above
ptp4l[99.489]: port 1 (swp3): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[99.490]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[99.492]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
[ 100.403768] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 0 which seems lost
[ 100.412545] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 1 which seems lost
[ 100.421283] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 2 which seems lost
[ 100.430015] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 3 which seems lost
[ 100.438744] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 4 which seems lost
[ 100.447470] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 100.505919] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[100.963]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 101.405077] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 101.507953] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 102.405405] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 102.509391] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 103.406003] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 103.510011] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 104.405601] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 104.510624] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[104.965]: selected best master clock d858d7.fffe.00ca6d
ptp4l[104.966]: port 1 (swp3): assuming the grand master role
ptp4l[104.967]: port 1 (swp3): LISTENING to GRAND_MASTER on RS_GRAND_MASTER
[ 105.106201] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.232420] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.359001] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.405500] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.485356] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.511220] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.610938] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.737237] mscc_felix 0000:00:00.5: port 3 timestamp id 0
(...)
Notice that in this new usage pattern, a non-congested port should
basically use timestamp ID 0 all the time, progressing to higher numbers
only if there are unacknowledged timestamps in flight. Compare this to
the old usage, where the timestamp ID used to monotonically increase
modulo OCELOT_MAX_PTP_ID.
In terms of implementation, this simplifies the bookkeeping of the
ocelot_port :: ts_id and ptp_skbs_in_flight. Since we need to traverse
the list of two-step timestampable skbs for each new packet anyway, the
information can already be computed and does not need to be stored.
Also, ocelot_port->tx_skbs is always accessed under the switch-wide
ocelot->ts_id_lock IRQ-unsafe spinlock, so we don't need the skb queue's
lock and can use the unlocked primitives safely.
This problem was actually detected using the tc-taprio offload, and is
causing trouble in TSN scenarios, which Felix (NXP LS1028A / VSC9959)
supports but Ocelot (VSC7514) does not. Thus, I've selected the commit
to blame as the one adding initial timestamping support for the Felix
switch.
Fixes: c0bcf53766 ("net: dsa: ocelot: add hardware timestamping support for Felix")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://patch.msgid.link/20241205145519.1236778-5-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 67c3ca2c5cfe6a50772514e3349b5e7b3b0fac03 ]
Problem description
-------------------
On an NXP LS1028A (felix DSA driver) with the following configuration:
- ocelot-8021q tagging protocol
- VLAN-aware bridge (with STP) spanning at least swp0 and swp1
- 8021q VLAN upper interfaces on swp0 and swp1: swp0.700, swp1.700
- ptp4l on swp0.700 and swp1.700
we see that the ptp4l instances do not see each other's traffic,
and they all go to the grand master state due to the
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES condition.
Jumping to the conclusion for the impatient
-------------------------------------------
There is a zero-day bug in the ocelot switchdev driver in the way it
handles VLAN-tagged packet injection. The correct logic already exists in
the source code, in function ocelot_xmit_get_vlan_info() added by commit
5ca721c54d ("net: dsa: tag_ocelot: set the classified VLAN during xmit").
But it is used only for normal NPI-based injection with the DSA "ocelot"
tagging protocol. The other injection code paths (register-based and
FDMA-based) roll their own wrong logic. This affects and was noticed on
the DSA "ocelot-8021q" protocol because it uses register-based injection.
By moving ocelot_xmit_get_vlan_info() to a place that's common for both
the DSA tagger and the ocelot switch library, it can also be called from
ocelot_port_inject_frame() in ocelot.c.
We need to touch the lines with ocelot_ifh_port_set()'s prototype
anyway, so let's rename it to something clearer regarding what it does,
and add a kernel-doc. ocelot_ifh_set_basic() should do.
Investigation notes
-------------------
Debugging reveals that PTP event (aka those carrying timestamps, like
Sync) frames injected into swp0.700 (but also swp1.700) hit the wire
with two VLAN tags:
00000000: 01 1b 19 00 00 00 00 01 02 03 04 05 81 00 02 bc
~~~~~~~~~~~
00000010: 81 00 02 bc 88 f7 00 12 00 2c 00 00 02 00 00 00
~~~~~~~~~~~
00000020: 00 00 00 00 00 00 00 00 00 00 00 01 02 ff fe 03
00000030: 04 05 00 01 00 04 00 00 00 00 00 00 00 00 00 00
00000040: 00 00
The second (unexpected) VLAN tag makes felix_check_xtr_pkt() ->
ptp_classify_raw() fail to see these as PTP packets at the link
partner's receiving end, and return PTP_CLASS_NONE (because the BPF
classifier is not written to expect 2 VLAN tags).
The reason why packets have 2 VLAN tags is because the transmission
code treats VLAN incorrectly.
Neither ocelot switchdev, nor felix DSA, declare the NETIF_F_HW_VLAN_CTAG_TX
feature. Therefore, at xmit time, all VLANs should be in the skb head,
and none should be in the hwaccel area. This is done by:
static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
netdev_features_t features)
{
if (skb_vlan_tag_present(skb) &&
!vlan_hw_offload_capable(features, skb->vlan_proto))
skb = __vlan_hwaccel_push_inside(skb);
return skb;
}
But ocelot_port_inject_frame() handles things incorrectly:
ocelot_ifh_port_set(ifh, port, rew_op, skb_vlan_tag_get(skb));
void ocelot_ifh_port_set(struct sk_buff *skb, void *ifh, int port, u32 rew_op)
{
(...)
if (vlan_tag)
ocelot_ifh_set_vlan_tci(ifh, vlan_tag);
(...)
}
The way __vlan_hwaccel_push_inside() pushes the tag inside the skb head
is by calling:
static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb)
{
skb->vlan_present = 0;
}
which does _not_ zero out skb->vlan_tci as seen by skb_vlan_tag_get().
This means that ocelot, when it calls skb_vlan_tag_get(), sees
(and uses) a residual skb->vlan_tci, while the same VLAN tag is
_already_ in the skb head.
The trivial fix for double VLAN headers is to replace the content of
ocelot_ifh_port_set() with:
if (skb_vlan_tag_present(skb))
ocelot_ifh_set_vlan_tci(ifh, skb_vlan_tag_get(skb));
but this would not be correct either, because, as mentioned,
vlan_hw_offload_capable() is false for us, so we'd be inserting dead
code and we'd always transmit packets with VID=0 in the injection frame
header.
I can't actually test the ocelot switchdev driver and rely exclusively
on code inspection, but I don't think traffic from 8021q uppers has ever
been injected properly, and not double-tagged. Thus I'm blaming the
introduction of VLAN fields in the injection header - early driver code.
As hinted at in the early conclusion, what we _want_ to happen for
VLAN transmission was already described once in commit 5ca721c54d
("net: dsa: tag_ocelot: set the classified VLAN during xmit").
ocelot_xmit_get_vlan_info() intends to ensure that if the port through
which we're transmitting is under a VLAN-aware bridge, the outer VLAN
tag from the skb head is stripped from there and inserted into the
injection frame header (so that the packet is processed in hardware
through that actual VLAN). And in all other cases, the packet is sent
with VID=0 in the injection frame header, since the port is VLAN-unaware
and has logic to strip this VID on egress (making it invisible to the
wire).
Fixes: 08d02364b1 ("net: mscc: fix the injection header")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
incl_srcpt has the limitation, mentioned in commit b4638af888 ("net:
dsa: sja1105: always enable the INCL_SRCPT option"), that frames with a
MAC DA of 01:80:c2:xx:yy:zz will be received as 01:80:c2:00:00:zz unless
PTP RX timestamping is enabled.
The incl_srcpt option was initially unconditionally enabled, then that
changed with commit 42824463d3 ("net: dsa: sja1105: Limit use of
incl_srcpt to bridge+vlan mode"), then again with b4638af888 ("net:
dsa: sja1105: always enable the INCL_SRCPT option"). Bottom line is that
it now needs to be always enabled, otherwise the driver does not have a
reliable source of information regarding source_port and switch_id for
link-local traffic (tag_8021q VLANs may be imprecise since now they
identify an entire bridging domain when ports are not standalone).
If we accept that PTP RX timestamping (and therefore, meta frame
generation) is always enabled in hardware, then that limitation could be
avoided and packets with any MAC DA can be properly received, because
meta frames do contain the original bytes from the MAC DA of their
associated link-local packet.
This change enables meta frame generation unconditionally, which also
has the nice side effects of simplifying the switch control path
(a switch reset is no longer required on hwtstamping settings change)
and the tagger data path (it no longer needs to be informed whether to
expect meta frames or not - it always does).
Fixes: 227d07a07e ("net: dsa: sja1105: Add support for traffic through standalone ports")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Reviewed-by: Florian Fainelli <florian.fainelli@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For PDelay_Resp messages we will likely have a negative value in the
correction field. The switch hardware cannot correctly update such
values (produces an off by one error in the UDP checksum), so it must be
moved to the time stamp field in the tail tag. Format of the correction
field is 48 bit ns + 16 bit fractional ns. After updating the
correction field, clone is no longer required hence it is freed.
Signed-off-by: Christian Eggers <ceggers@arri.de>
Co-developed-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Signed-off-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds the routines for transmission of ptp packets. When the
ptp pdelay_req packet to be transmitted, it uses the deferred xmit
worker to schedule the packets.
During irq_setup, interrupt for Sync, Pdelay_req and Pdelay_rsp are
enabled. So interrupt is triggered for all three packets. But for
p2p1step, we require only time stamp of Pdelay_req packet. Hence to
avoid posting of the completion from ISR routine for Sync and
Pdelay_resp packets, ts_en flag is introduced. This controls which
packets need to processed for timestamp.
After the packet is transmitted, ISR is triggered. The time at which
packet transmitted is recorded to separate register.
This value is reconstructed to absolute time and posted to the user
application through socket error queue.
Signed-off-by: Christian Eggers <ceggers@arri.de>
Co-developed-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Signed-off-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rx Timestamping is done through 4 additional bytes in tail tag.
Whenever the ptp packet is received, the 4 byte hardware time stamped
value is added before 1 byte tail tag. Also, bit 7 in tail tag indicates
it as PTP frame. This 4 byte value is extracted from the tail tag and
reconstructed to absolute time and assigned to skb hwtstamp.
If the packet received in PDelay_Resp, then partial ingress timestamp
is subtracted from the correction field. Since user space tools expects
to be done in hardware.
Signed-off-by: Christian Eggers <ceggers@arri.de>
Co-developed-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Signed-off-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the PTP is enabled in hardware bit 6 of PTP_MSG_CONF1 register, the
transmit frame needs additional 4 bytes before the tail tag. It is
needed for all the transmission packets irrespective of PTP packets or
not.
The 4-byte timestamp field is 0 for frames other than Pdelay_Resp. For
the one-step Pdelay_Resp, the switch needs the receive timestamp of the
Pdelay_Req message so that it can put the turnaround time in the
correction field.
Since PTP has to be enabled for both Transmission and reception
timestamping, driver needs to track of the tx and rx setting of the all
the user ports in the switch.
Two flags hw_tx_en and hw_rx_en are added in ksz_port to track the
timestampping setting of each port. When any one of ports has tx or rx
timestampping enabled, bit 6 of PTP_MSG_CONF1 is set and it is indicated
to tag_ksz.c through tagger bytes. This flag adds 4 additional bytes to
the tail tag. When tx and rx timestamping of all the ports are disabled,
then 4 bytes are not added.
Tested using hwstamp -i <interface>
Signed-off-by: Arun Ramadoss <arun.ramadoss@microchip.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com> # mostly api
Signed-off-by: David S. Miller <davem@davemloft.net>
It was discovered that MGMT_DATA2 can contain up to 28 bytes of data
instead of the 12 bytes written in the Documentation by accounting the
limit of 16 bytes declared in Documentation subtracting the first 4 byte
in the packet header.
Update the define with the real world value.
Tested-by: Ronald Wahl <ronald.wahl@raritan.com>
Fixes: c2ee8181fd ("net: dsa: tag_qca: add define for handling mgmt Ethernet packet")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Cc: stable@vger.kernel.org # v5.18+
Signed-off-by: David S. Miller <davem@davemloft.net>
tag_8021q definitions are all over the place. Some are exported to
linux/dsa/8021q.h (visible by DSA core, taggers, switch drivers and
everyone else), and some are in dsa_priv.h.
Move the structures that don't need external visibility into tag_8021q.c,
and the ones which don't need the world or switch drivers to see them
into tag_8021q.h.
We also have the tag_8021q.h inclusion from switch.c, which is basically
the entire reason why tag_8021q.c was built into DSA in commit
8b6e638b4b ("net: dsa: build tag_8021q.c as part of DSA core").
I still don't know how to better deal with that, so leave it alone.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The switch sends autocast mib in little-endian. This is problematic for
big-endian system as the values needs to be converted.
Fix this by converting each mib value to cpu byte order.
Fixes: 5c957c7ca7 ("net: dsa: qca8k: add support for mib autocast in Ethernet packet")
Tested-by: Pawel Dembicki <paweldembicki@gmail.com>
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The header and the data of the skb for the inband mgmt requires
to be in little-endian. This is problematic for big-endian system
as the mgmt header is written in the cpu byte order.
Fix this by converting each value for the mgmt header and data to
little-endian, and convert to cpu byte order the mgmt header and
data sent by the switch.
Fixes: 5950c7c0a6 ("net: dsa: qca8k: add support for mgmt read/write in Ethernet packet")
Tested-by: Pawel Dembicki <paweldembicki@gmail.com>
Tested-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The dsa_8021q_bridge_tx_fwd_offload_vid is no longer used just for
bridge TX forwarding offload, it is the private VLAN reserved for
VLAN-unaware bridging in a way that is compatible with FDB isolation.
So just rename it dsa_tag_8021q_bridge_vid.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105 switch can't populate the PORT field of the tag_8021q header
when sending a frame to the CPU with a non-zero VBID.
Similar to dsa_find_designated_bridge_port_by_vid() which performs
imprecise RX for VLAN-aware bridges, let's introduce a helper in
tag_8021q for performing imprecise RX based on the VLAN that it has
allocated for a VLAN-unaware bridge.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For VLAN-unaware bridging, tag_8021q uses something perhaps a bit too
tied with the sja1105 switch: each port uses the same pvid which is also
used for standalone operation (a unique one from which the source port
and device ID can be retrieved when packets from that port are forwarded
to the CPU). Since each port has a unique pvid when performing
autonomous forwarding, the switch must be configured for Shared VLAN
Learning (SVL) such that the VLAN ID itself is ignored when performing
FDB lookups. Without SVL, packets would always be flooded, since FDB
lookup in the source port's VLAN would never find any entry.
First of all, to make tag_8021q more palatable to switches which might
not support Shared VLAN Learning, let's just use a common VLAN for all
ports that are under the same bridge.
Secondly, using Shared VLAN Learning means that FDB isolation can never
be enforced. But if all ports under the same VLAN-unaware bridge share
the same VLAN ID, it can.
The disadvantage is that the CPU port can no longer perform precise
source port identification for these packets. But at least we have a
mechanism which has proven to be adequate for that situation: imprecise
RX (dsa_find_designated_bridge_port_by_vid), which is what we use for
termination on VLAN-aware bridges.
The VLAN ID that VLAN-unaware bridges will use with tag_8021q is the
same one as we were previously using for imprecise TX (bridge TX
forwarding offload). It is already allocated, it is just a matter of
using it.
Note that because now all ports under the same bridge share the same
VLAN, the complexity of performing a tag_8021q bridge join decreases
dramatically. We no longer have to install the RX VLAN of a newly
joining port into the port membership of the existing bridge ports.
The newly joining port just becomes a member of the VLAN corresponding
to that bridge, and the other ports are already members of it from when
they joined the bridge themselves. So forwarding works properly.
This means that we can unhook dsa_tag_8021q_bridge_{join,leave} from the
cross-chip notifier level dsa_switch_bridge_{join,leave}. We can put
these calls directly into the sja1105 driver.
With this new mode of operation, a port controlled by tag_8021q can have
two pvids whereas before it could only have one. The pvid for standalone
operation is different from the pvid used for VLAN-unaware bridging.
This is done, again, so that FDB isolation can be enforced.
Let tag_8021q manage this by deleting the standalone pvid when a port
joins a bridge, and restoring it when it leaves it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add connect/disconnect helper to assign private struct to the DSA switch.
Add support for Ethernet mgmt and MIB if the DSA driver provide an handler
to correctly parse and elaborate the data.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add all the required define to prepare support for mgmt read/write in
Ethernet packet. Any packet of this type has to be dropped as the only
use of these special packet is receive ack for an mgmt write request or
receive data for an mgmt read request.
A struct is used that emulates the Ethernet header but is used for a
different purpose.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move tag_qca define to include dir linux/dsa as the qca8k require access
to the tagger define to support in-band mdio read/write using ethernet
packet.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2021-12-30
The following pull-request contains BPF updates for your *net-next* tree.
We've added 72 non-merge commits during the last 20 day(s) which contain
a total of 223 files changed, 3510 insertions(+), 1591 deletions(-).
The main changes are:
1) Automatic setrlimit in libbpf when bpf is memcg's in the kernel, from Andrii.
2) Beautify and de-verbose verifier logs, from Christy.
3) Composable verifier types, from Hao.
4) bpf_strncmp helper, from Hou.
5) bpf.h header dependency cleanup, from Jakub.
6) get_func_[arg|ret|arg_cnt] helpers, from Jiri.
7) Sleepable local storage, from KP.
8) Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support, from Kumar.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
sock.h is pretty heavily used (5k objects rebuilt on x86 after
it's touched). We can drop the include of filter.h from it and
add a forward declaration of struct sk_filter instead.
This decreases the number of rebuilt objects when bpf.h
is touched from ~5k to ~1k.
There's a lot of missing includes this was masking. Primarily
in networking tho, this time.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Acked-by: Stefano Garzarella <sgarzare@redhat.com>
Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org
The driver was incorrectly converted assuming that "sja1105" is the only
tagger supported by this driver. This results in SJA1110 switches
failing to probe:
sja1105 spi1.0: Unable to connect to tag protocol "sja1110": -EPROTONOSUPPORT
sja1105: probe of spi1.2 failed with error -93
Add DSA_TAG_PROTO_SJA1110 to the list of supported taggers by the
sja1105 driver. The sja1105_tagger_data structure format is common for
the two tagging protocols.
Fixes: c79e84866d ("net: dsa: tag_sja1105: convert to tagger-owned data")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105 driver messes with the tagging protocol's state when PTP RX
timestamping is enabled/disabled. This is fundamentally necessary
because the tagger needs to know what to do when it receives a PTP
packet. If RX timestamping is enabled, then a metadata follow-up frame
is expected, and this holds the (partial) timestamp. So the tagger plays
hide-and-seek with the network stack until it also gets the metadata
frame, and then presents a single packet, the timestamped PTP packet.
But when RX timestamping isn't enabled, there is no metadata frame
expected, so the hide-and-seek game must be turned off and the packet
must be delivered right away to the network stack.
Considering this, we create a pseudo isolation by devising two tagger
methods callable by the switch: one to get the RX timestamping state,
and one to set it. Since we can't export symbols between the tagger and
the switch driver, these methods are exposed through function pointers.
After this change, the public portion of the sja1105_tagger_data
contains only function pointers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit 6d709cadfd.
The above change was done to avoid calling symbols exported by the
switch driver from the tagging protocol driver.
With the tagger-owned storage model, we have a new option on our hands,
and that is for the switch driver to provide a data consumer handler in
the form of a function pointer inside the ->connect_tag_protocol()
method. Having a function pointer avoids the problems of the exported
symbols approach.
By creating a handler for metadata frames holding TX timestamps on
SJA1110, we are able to eliminate an skb queue from the tagger data, and
replace it with a simple, and stateless, function pointer. This skb
queue is now handled exclusively by sja1105_ptp.c, which makes the code
easier to follow, as it used to be before the reverted patch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>