In -RT task_blocks_on_rt_mutex() may return with -EAGAIN due to
(->pi_blocked_on == PI_WAKEUP_INPROGRESS) before it added itself as a
waiter. In such a case remove_waiter() must not be called because without a
waiter it will trigger the BUG_ON() statement.
This was initially reported by Yimin Deng. Thomas Gleixner fixed it then
with an explicit check for waiters before calling remove_waiter().
Instead of an explicit NULL check before calling rt_mutex_top_waiter() make
the function return NULL if there are no waiters. With that fixed the now
pointless NULL check is removed from rt_mutex_slowlock().
Reported-and-debugged-by: Yimin Deng <yimin11.deng@gmail.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/CAAh1qt=DCL9aUXNxanP5BKtiPp3m+qj4yB+gDohhXPVFCxWwzg@mail.gmail.com
Link: https://lkml.kernel.org/r/20180327121438.sss7hxg3crqy4ecd@linutronix.de
When running rcutorture with TREE03 config, CONFIG_PROVE_LOCKING=y, and
kernel cmdline argument "rcutorture.gp_exp=1", lockdep reports a
HARDIRQ-safe->HARDIRQ-unsafe deadlock:
================================
WARNING: inconsistent lock state
4.16.0-rc4+ #1 Not tainted
--------------------------------
inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
takes:
__schedule+0xbe/0xaf0
{IN-HARDIRQ-W} state was registered at:
_raw_spin_lock+0x2a/0x40
scheduler_tick+0x47/0xf0
...
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&rq->lock);
<Interrupt>
lock(&rq->lock);
*** DEADLOCK ***
1 lock held by rcu_torture_rea/724:
rcu_torture_read_lock+0x0/0x70
stack backtrace:
CPU: 2 PID: 724 Comm: rcu_torture_rea Not tainted 4.16.0-rc4+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014
Call Trace:
lock_acquire+0x90/0x200
? __schedule+0xbe/0xaf0
_raw_spin_lock+0x2a/0x40
? __schedule+0xbe/0xaf0
__schedule+0xbe/0xaf0
preempt_schedule_irq+0x2f/0x60
retint_kernel+0x1b/0x2d
RIP: 0010:rcu_read_unlock_special+0x0/0x680
? rcu_torture_read_unlock+0x60/0x60
__rcu_read_unlock+0x64/0x70
rcu_torture_read_unlock+0x17/0x60
rcu_torture_reader+0x275/0x450
? rcutorture_booster_init+0x110/0x110
? rcu_torture_stall+0x230/0x230
? kthread+0x10e/0x130
kthread+0x10e/0x130
? kthread_create_worker_on_cpu+0x70/0x70
? call_usermodehelper_exec_async+0x11a/0x150
ret_from_fork+0x3a/0x50
This happens with the following even sequence:
preempt_schedule_irq();
local_irq_enable();
__schedule():
local_irq_disable(); // irq off
...
rcu_note_context_switch():
rcu_note_preempt_context_switch():
rcu_read_unlock_special():
local_irq_save(flags);
...
raw_spin_unlock_irqrestore(...,flags); // irq remains off
rt_mutex_futex_unlock():
raw_spin_lock_irq();
...
raw_spin_unlock_irq(); // accidentally set irq on
<return to __schedule()>
rq_lock():
raw_spin_lock(); // acquiring rq->lock with irq on
which means rq->lock becomes a HARDIRQ-unsafe lock, which can cause
deadlocks in scheduler code.
This problem was introduced by commit 02a7c234e5 ("rcu: Suppress
lockdep false-positive ->boost_mtx complaints"). That brought the user
of rt_mutex_futex_unlock() with irq off.
To fix this, replace the *lock_irq() in rt_mutex_futex_unlock() with
*lock_irq{save,restore}() to make it safe to call rt_mutex_futex_unlock()
with irq off.
Fixes: 02a7c234e5 ("rcu: Suppress lockdep false-positive ->boost_mtx complaints")
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20180309065630.8283-1-boqun.feng@gmail.com
Julia reported futex state corruption in the following scenario:
waiter waker stealer (prio > waiter)
futex(WAIT_REQUEUE_PI, uaddr, uaddr2,
timeout=[N ms])
futex_wait_requeue_pi()
futex_wait_queue_me()
freezable_schedule()
<scheduled out>
futex(LOCK_PI, uaddr2)
futex(CMP_REQUEUE_PI, uaddr,
uaddr2, 1, 0)
/* requeues waiter to uaddr2 */
futex(UNLOCK_PI, uaddr2)
wake_futex_pi()
cmp_futex_value_locked(uaddr2, waiter)
wake_up_q()
<woken by waker>
<hrtimer_wakeup() fires,
clears sleeper->task>
futex(LOCK_PI, uaddr2)
__rt_mutex_start_proxy_lock()
try_to_take_rt_mutex() /* steals lock */
rt_mutex_set_owner(lock, stealer)
<preempted>
<scheduled in>
rt_mutex_wait_proxy_lock()
__rt_mutex_slowlock()
try_to_take_rt_mutex() /* fails, lock held by stealer */
if (timeout && !timeout->task)
return -ETIMEDOUT;
fixup_owner()
/* lock wasn't acquired, so,
fixup_pi_state_owner skipped */
return -ETIMEDOUT;
/* At this point, we've returned -ETIMEDOUT to userspace, but the
* futex word shows waiter to be the owner, and the pi_mutex has
* stealer as the owner */
futex_lock(LOCK_PI, uaddr2)
-> bails with EDEADLK, futex word says we're owner.
And suggested that what commit:
73d786bd04 ("futex: Rework inconsistent rt_mutex/futex_q state")
removes from fixup_owner() looks to be just what is needed. And indeed
it is -- I completely missed that requeue_pi could also result in this
case. So we need to restore that, except that subsequent patches, like
commit:
16ffa12d74 ("futex: Pull rt_mutex_futex_unlock() out from under hb->lock")
changed all the locking rules. Even without that, the sequence:
- if (rt_mutex_futex_trylock(&q->pi_state->pi_mutex)) {
- locked = 1;
- goto out;
- }
- raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
- owner = rt_mutex_owner(&q->pi_state->pi_mutex);
- if (!owner)
- owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
- raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
- ret = fixup_pi_state_owner(uaddr, q, owner);
already suggests there were races; otherwise we'd never have to look
at next_owner.
So instead of doing 3 consecutive wait_lock sections with who knows
what races, we do it all in a single section. Additionally, the usage
of pi_state->owner in fixup_owner() was only safe because only the
rt_mutex owner would modify it, which this additional case wrecks.
Luckily the values can only change away and not to the value we're
testing, this means we can do a speculative test and double check once
we have the wait_lock.
Fixes: 73d786bd04 ("futex: Rework inconsistent rt_mutex/futex_q state")
Reported-by: Julia Cartwright <julia@ni.com>
Reported-by: Gratian Crisan <gratian.crisan@ni.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Julia Cartwright <julia@ni.com>
Tested-by: Gratian Crisan <gratian.crisan@ni.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171208124939.7livp7no2ov65rrc@hirez.programming.kicks-ass.net
Markus reported that the glibc/nptl/tst-robustpi8 test was failing after
commit:
cfafcd117d ("futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()")
The following trace shows the problem:
ld-linux-x86-64-2161 [019] .... 410.760971: SyS_futex: 00007ffbeb76b028: 80000875 op=FUTEX_LOCK_PI
ld-linux-x86-64-2161 [019] ...1 410.760972: lock_pi_update_atomic: 00007ffbeb76b028: curval=80000875 uval=80000875 newval=80000875 ret=0
ld-linux-x86-64-2165 [011] .... 410.760978: SyS_futex: 00007ffbeb76b028: 80000875 op=FUTEX_UNLOCK_PI
ld-linux-x86-64-2165 [011] d..1 410.760979: do_futex: 00007ffbeb76b028: curval=80000875 uval=80000875 newval=80000871 ret=0
ld-linux-x86-64-2165 [011] .... 410.760980: SyS_futex: 00007ffbeb76b028: 80000871 ret=0000
ld-linux-x86-64-2161 [019] .... 410.760980: SyS_futex: 00007ffbeb76b028: 80000871 ret=ETIMEDOUT
Task 2165 does an UNLOCK_PI, assigning the lock to the waiter task 2161
which then returns with -ETIMEDOUT. That wrecks the lock state, because now
the owner isn't aware it acquired the lock and removes the pending robust
list entry.
If 2161 is killed, the robust list will not clear out this futex and the
subsequent acquire on this futex will then (correctly) result in -ESRCH
which is unexpected by glibc, triggers an internal assertion and dies.
Task 2161 Task 2165
rt_mutex_wait_proxy_lock()
timeout();
/* T2161 is still queued in the waiter list */
return -ETIMEDOUT;
futex_unlock_pi()
spin_lock(hb->lock);
rtmutex_unlock()
remove_rtmutex_waiter(T2161);
mark_lock_available();
/* Make the next waiter owner of the user space side */
futex_uval = 2161;
spin_unlock(hb->lock);
spin_lock(hb->lock);
rt_mutex_cleanup_proxy_lock()
if (rtmutex_owner() !== current)
...
return FAIL;
....
return -ETIMEOUT;
This means that rt_mutex_cleanup_proxy_lock() needs to call
try_to_take_rt_mutex() so it can take over the rtmutex correctly which was
assigned by the waker. If the rtmutex is owned by some other task then this
call is harmless and just confirmes that the waiter is not able to acquire
it.
While there, fix what looks like a merge error which resulted in
rt_mutex_cleanup_proxy_lock() having two calls to
fixup_rt_mutex_waiters() and rt_mutex_wait_proxy_lock() not having any.
Both should have one, since both potentially touch the waiter list.
Fixes: 38d589f2fd ("futex,rt_mutex: Restructure rt_mutex_finish_proxy_lock()")
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Bug-Spotted-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Link: http://lkml.kernel.org/r/20170519154850.mlomgdsd26drq5j6@hirez.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rt_mutex_waiter::prio is a copy of task_struct::prio which is updated
during the PI chain walk, such that the PI chain order isn't messed up
by (asynchronous) task state updates.
Currently rt_mutex_waiter_less() uses task state for deadline tasks;
this is broken, since the task state can, as said above, change
asynchronously, causing the RB tree order to change without actual
tree update -> FAIL.
Fix this by also copying the deadline into the rt_mutex_waiter state
and updating it along with its prio field.
Ideally we would also force PI chain updates whenever DL tasks update
their deadline parameter, but for first approximation this is less
broken than it was.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.403992539@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A crash happened while I was playing with deadline PI rtmutex.
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff810eeb8f>] rt_mutex_get_top_task+0x1f/0x30
PGD 232a75067 PUD 230947067 PMD 0
Oops: 0000 [#1] SMP
CPU: 1 PID: 10994 Comm: a.out Not tainted
Call Trace:
[<ffffffff810b658c>] enqueue_task+0x2c/0x80
[<ffffffff810ba763>] activate_task+0x23/0x30
[<ffffffff810d0ab5>] pull_dl_task+0x1d5/0x260
[<ffffffff810d0be6>] pre_schedule_dl+0x16/0x20
[<ffffffff8164e783>] __schedule+0xd3/0x900
[<ffffffff8164efd9>] schedule+0x29/0x70
[<ffffffff8165035b>] __rt_mutex_slowlock+0x4b/0xc0
[<ffffffff81650501>] rt_mutex_slowlock+0xd1/0x190
[<ffffffff810eeb33>] rt_mutex_timed_lock+0x53/0x60
[<ffffffff810ecbfc>] futex_lock_pi.isra.18+0x28c/0x390
[<ffffffff810ed8b0>] do_futex+0x190/0x5b0
[<ffffffff810edd50>] SyS_futex+0x80/0x180
This is because rt_mutex_enqueue_pi() and rt_mutex_dequeue_pi()
are only protected by pi_lock when operating pi waiters, while
rt_mutex_get_top_task(), will access them with rq lock held but
not holding pi_lock.
In order to tackle it, we introduce new "pi_top_task" pointer
cached in task_struct, and add new rt_mutex_update_top_task()
to update its value, it can be called by rt_mutex_setprio()
which held both owner's pi_lock and rq lock. Thus "pi_top_task"
can be safely accessed by enqueue_task_dl() under rq lock.
Originally-From: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.157682758@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We should deboost before waking the high-priority task, such that we
don't run two tasks with the same "state" (priority, deadline,
sched_class, etc).
In order to make sure the boosting task doesn't start running between
unlock and deboost (due to 'spurious' wakeup), we move the deboost
under the wait_lock, that way its serialized against the wait loop in
__rt_mutex_slowlock().
Doing the deboost early can however lead to priority-inversion if
current would get preempted after the deboost but before waking our
high-prio task, hence we disable preemption before doing deboost, and
enabling it after the wake up is over.
This gets us the right semantic order, but most importantly however;
this change ensures pointer stability for the next patch, where we
have rt_mutex_setprio() cache a pointer to the top-most waiter task.
If we, as before this change, do the wakeup first and then deboost,
this pointer might point into thin air.
[peterz: Changelog + patch munging]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.110065320@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When PREEMPT_RT_FULL does the spinlock -> rt_mutex substitution the PI
chain code will (falsely) report a deadlock and BUG.
The problem is that it hold hb->lock (now an rt_mutex) while doing
task_blocks_on_rt_mutex on the futex's pi_state::rtmutex. This, when
interleaved just right with futex_unlock_pi() leads it to believe to see an
AB-BA deadlock.
Task1 (holds rt_mutex, Task2 (does FUTEX_LOCK_PI)
does FUTEX_UNLOCK_PI)
lock hb->lock
lock rt_mutex (as per start_proxy)
lock hb->lock
Which is a trivial AB-BA.
It is not an actual deadlock, because it won't be holding hb->lock by the
time it actually blocks on the rt_mutex, but the chainwalk code doesn't
know that and it would be a nightmare to handle this gracefully.
To avoid this problem, do the same as in futex_unlock_pi() and drop
hb->lock after acquiring wait_lock. This still fully serializes against
futex_unlock_pi(), since adding to the wait_list does the very same lock
dance, and removing it holds both locks.
Aside of solving the RT problem this makes the lock and unlock mechanism
symetric and reduces the hb->lock held time.
Reported-and-tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.161341537@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
By changing futex_lock_pi() to use rt_mutex_*_proxy_lock() all wait_list
modifications are done under both hb->lock and wait_lock.
This closes the obvious interleave pattern between futex_lock_pi() and
futex_unlock_pi(), but not entirely so. See below:
Before:
futex_lock_pi() futex_unlock_pi()
unlock hb->lock
lock hb->lock
unlock hb->lock
lock rt_mutex->wait_lock
unlock rt_mutex_wait_lock
-EAGAIN
lock rt_mutex->wait_lock
list_add
unlock rt_mutex->wait_lock
schedule()
lock rt_mutex->wait_lock
list_del
unlock rt_mutex->wait_lock
<idem>
-EAGAIN
lock hb->lock
After:
futex_lock_pi() futex_unlock_pi()
lock hb->lock
lock rt_mutex->wait_lock
list_add
unlock rt_mutex->wait_lock
unlock hb->lock
schedule()
lock hb->lock
unlock hb->lock
lock hb->lock
lock rt_mutex->wait_lock
list_del
unlock rt_mutex->wait_lock
lock rt_mutex->wait_lock
unlock rt_mutex_wait_lock
-EAGAIN
unlock hb->lock
It does however solve the earlier starvation/live-lock scenario which got
introduced with the -EAGAIN since unlike the before scenario; where the
-EAGAIN happens while futex_unlock_pi() doesn't hold any locks; in the
after scenario it happens while futex_unlock_pi() actually holds a lock,
and then it is serialized on that lock.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.062785528@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the ultimate goal of keeping rt_mutex wait_list and futex_q waiters
consistent it's necessary to split 'rt_mutex_futex_lock()' into finer
parts, such that only the actual blocking can be done without hb->lock
held.
Split split_mutex_finish_proxy_lock() into two parts, one that does the
blocking and one that does remove_waiter() when the lock acquire failed.
When the rtmutex was acquired successfully the waiter can be removed in the
acquisiton path safely, since there is no concurrency on the lock owner.
This means that, except for futex_lock_pi(), all wait_list modifications
are done with both hb->lock and wait_lock held.
[bigeasy@linutronix.de: fix for futex_requeue_pi_signal_restart]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: xlpang@redhat.com
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: dvhart@infradead.org
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170322104152.001659630@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/wake_q.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/wake_q.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>