Pull init_task initializer cleanups from David Howells:
"It doesn't seem useful to have the init_task in a header file rather
than in a normal source file. We could consolidate init_task handling
instead and expand out various macros.
Here's a series of patches that consolidate init_task handling:
(1) Make THREAD_SIZE available to vmlinux.lds for cris, hexagon and
openrisc.
(2) Alter the INIT_TASK_DATA linker script macro to set
init_thread_union and init_stack rather than defining these in C.
Insert init_task and init_thread_into into the init_stack area in
the linker script as appropriate to the configuration, with
different section markers so that they end up correctly ordered.
We can then get merge ia64's init_task.c into the main one.
We then have a bunch of single-use INIT_*() macros that seem only
to be macros because they used to be used per-arch. We can then
expand these in place of the user and get rid of a few lines and
a lot of backslashes.
(3) Expand INIT_TASK() in place.
(4) Expand in place various small INIT_*() macros that are defined
conditionally. Expand them and surround them by #if[n]def/#endif
in the .c file as it takes fewer lines.
(5) Expand INIT_SIGNALS() and INIT_SIGHAND() in place.
(6) Expand INIT_STRUCT_PID in place.
These macros can then be discarded"
* tag 'init_task-20180117' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
Expand INIT_STRUCT_PID and remove
Expand the INIT_SIGNALS and INIT_SIGHAND macros and remove
Expand various INIT_* macros and remove
Expand INIT_TASK() in init/init_task.c and remove
Construct init thread stack in the linker script rather than by union
openrisc: Make THREAD_SIZE available to vmlinux.lds
hexagon: Make THREAD_SIZE available to vmlinux.lds
cris: Make THREAD_SIZE available to vmlinux.lds
The function tracer can create a dynamically allocated trampoline that is
called by the function mcount or fentry hook that is used to call the
function callback that is registered. The problem is that the orc undwinder
will bail if it encounters one of these trampolines. This breaks the stack
trace of function callbacks, which include the stack tracer and setting the
stack trace for individual functions.
Since these dynamic trampolines are basically copies of the static ftrace
trampolines defined in ftrace_*.S, we do not need to create new orc entries
for the dynamic trampolines. Finding the return address on the stack will be
identical as the functions that were copied to create the dynamic
trampolines. When encountering a ftrace dynamic trampoline, we can just use
the orc entry of the ftrace static function that was copied for that
trampoline.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Pull tracing updates from
- allow module init functions to be traced
- clean up some unused or not used by config events (saves space)
- clean up of trace histogram code
- add support for preempt and interrupt enabled/disable events
- other various clean ups
* tag 'trace-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (30 commits)
tracing, thermal: Hide cpu cooling trace events when not in use
tracing, thermal: Hide devfreq trace events when not in use
ftrace: Kill FTRACE_OPS_FL_PER_CPU
perf/ftrace: Small cleanup
perf/ftrace: Fix function trace events
perf/ftrace: Revert ("perf/ftrace: Fix double traces of perf on ftrace:function")
tracing, dma-buf: Remove unused trace event dma_fence_annotate_wait_on
tracing, memcg, vmscan: Hide trace events when not in use
tracing/xen: Hide events that are not used when X86_PAE is not defined
tracing: mark trace_test_buffer as __maybe_unused
printk: Remove superfluous memory barriers from printk_safe
ftrace: Clear hashes of stale ips of init memory
tracing: Add support for preempt and irq enable/disable events
tracing: Prepare to add preempt and irq trace events
ftrace/kallsyms: Have /proc/kallsyms show saved mod init functions
ftrace: Add freeing algorithm to free ftrace_mod_maps
ftrace: Save module init functions kallsyms symbols for tracing
ftrace: Allow module init functions to be traced
ftrace: Add a ftrace_free_mem() function for modules to use
tracing: Reimplement log2
...
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a module is loaded while tracing is enabled, then there's a possibility
that the module init functions were traced. These functions have their name
and address stored by ftrace such that it can translate the function address
that is written into the buffer into a human readable function name.
As userspace tools may be doing the same, they need a way to map function
names to their address as well. This is done through reading /proc/kallsyms.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In order to be able to trace module init functions, the module code needs to
tell ftrace what is being freed when the init sections are freed. Use the
code that the main init calls to tell ftrace to free the main init sections.
This requires passing in a start and end address to free.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When a module filter is added to set_ftrace_filter, if the module is not
loaded, it is cached. This should be considered an active filter, and
function tracing should be filtered by this. That is, if a cached module
filter is the only filter set, then no function tracing should be happening,
as all the functions available will be filtered out.
This makes sense, as the reason to add a cached module filter, is to trace
the module when you load it. There shouldn't be any other tracing happening
until then.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When writing in a module filter into set_ftrace_filter for a module that is
not yet loaded, it it cached, and will be executed when the module is loaded
(although that is not implemented yet at this commit). Display the list of
cached modules to be traced.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
All the enum flags for FTRACE_OPS has a comment except for the RCU one. Add
the comment for that.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Now that the function probes have their own ftrace_ops, there's no reason to
continue using the ftrace_func_hash to find which probe to call in the
function callback. The ops that is passed in to the function callback is
part of the probe_ops to call.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As nothing outside the tracing directory uses the function command mechanism,
I'm moving the prototypes out of the include/linux/ftrace.h and into the
local kernel/trace/trace.h header. I plan on making them hook to the
trace_array structure which is local to kernel/trace, and I do not want to
expose it to the rest of the kernel. This requires that the command functions
must also be local to tracing. But luckily nothing else uses them.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As nothing outside the tracing directory uses the function probes mechanism,
I'm moving the prototypes out of the include/linux/ftrace.h and into the
local kernel/trace/trace.h header. I plan on making them hook to the
trace_array structure which is local to kernel/trace, and I do not want to
expose it to the rest of the kernel. This requires that the probe functions
must also be local to tracing. But luckily nothing else uses them.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In order to eliminate a function call, make "trace_active" into
"disable_stack_tracer" and convert stack_tracer_disable() and friends into
static inline functions.
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
There are certain parts of the kernel that cannot let stack tracing
proceed (namely in RCU), because the stack tracer uses RCU, and parts of RCU
internals cannot handle having RCU read side locks taken.
Add stack_tracer_disable() and stack_tracer_enable() functions to let RCU
stop stack tracing on the current CPU when it is in those critical sections.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Relying on free_reserved_area() to call ftrace to free init memory proved to
not be sufficient. The issue is that on x86, when debug_pagealloc is
enabled, the init memory is not freed, but simply set as not present. Since
ftrace was uninformed of this, starting function tracing still tries to
update pages that are not present according to the page tables, causing
ftrace to bug, as well as killing the kernel itself.
Instead of relying on free_reserved_area(), have init/main.c call ftrace
directly just before it frees the init memory. Then it needs to use
__init_begin and __init_end to know where the init memory location is.
Looking at all archs (and testing what I can), it appears that this should
work for each of them.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Create an early_trace_init() function that will initialize the buffers and
allow for ealier use of trace_printk(). This will also allow for future work
to have function tracing start earlier at boot up.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>