While wq_pod_type[] can now group CPUs in any aribitrary way, WQ_AFFN_NUM
init is hard coded into workqueue_init_topology(). This patch modularizes
the init path by introducing init_pod_type() which takes a callback to
determine whether two CPUs should share a pod as an argument.
init_pod_type() first scans the CPU combinations testing for sharing to
assign consecutive pod IDs and initialize pod_type->cpu_pod[]. Once
->cpu_pod[] is determined, ->pod_cpus[] and ->pod_node[] are initialized
accordingly. WQ_AFFN_NUMA is now initialized by calling init_pod_type() with
cpus_share_numa() which tests whether the CPU belongs to the same NUMA node.
This patch may change the pod ID assigned to each NUMA node but that
shouldn't cause any behavior changes as the NUMA node to use for allocations
are tracked separately in pod_type->pod_node[]. This makes adding new
affinty types pretty easy.
Signed-off-by: Tejun Heo <tj@kernel.org>
While renamed to pod, the code still assumes that the pods are defined by
NUMA boundaries. Let's generalize it:
* workqueue_attrs->affn_scope is added. Each enum represents the type of
boundaries that define the pods. There are currently two scopes -
WQ_AFFN_NUMA and WQ_AFFN_SYSTEM. The former is the same behavior as before
- one pod per NUMA node. The latter defines one global pod across the
whole system.
* struct wq_pod_type is added which describes how pods are configured for
each affnity scope. For each pod, it lists the member CPUs and the
preferred NUMA node for memory allocations. The reverse mapping from CPU
to pod is also available.
* wq_pod_enabled is dropped. Pod is now always enabled. The previously
disabled behavior is now implemented through WQ_AFFN_SYSTEM.
* get_unbound_pool() wants to determine the NUMA node to allocate memory
from for the new pool. The variables are renamed from node to pod but the
logic still assumes they're one and the same. Clearly distinguish them -
walk the WQ_AFFN_NUMA pods to find the matching pod and then use the pod's
NUMA node.
* wq_calc_pod_cpumask() was taking @pod but assumed that it was the NUMA
node. Take @cpu instead and determine the cpumask to use from the pod_type
matching @attrs.
* apply_wqattrs_prepare() is update to return ERR_PTR() on error instead of
NULL so that it can indicate -EINVAL on invalid affinity scopes.
This patch allows CPUs to be grouped into pods however desired per type.
While this patch causes some internal behavior changes, nothing material
should change for workqueue users.
v2: Trigger WARN_ON_ONCE() in wqattrs_pod_type() if affn_scope is
WQ_AFFN_NR_TYPES which indicates that the function is called with a
worker_pool's attrs instead of a workqueue's.
Signed-off-by: Tejun Heo <tj@kernel.org>
workqueue_attrs can be used for both workqueues and worker_pools. However,
some fields, currently only ->ordered, only apply to workqueues and should
be cleared to the default / invalid values.
Currently, an unbound workqueue explicitly clears attrs->ordered in
get_unbound_pool() after copying the source workqueue attrs, while per-cpu
workqueues rely on the fact that zeroing on allocation gives us the desired
default value for pool->attrs->ordered.
This is fragile. Let's add wqattrs_clear_for_pool() which clears
attrs->ordered and is called from both init_worker_pool() and
get_unbound_pool(). This will ease adding more workqueue-only attrs fields.
In get_unbound_pool(), pool->node initialization is moved upwards for
readability. This shouldn't cause any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
For an unbound pool, multiple cpumasks are involved.
U: The user-specified cpumask (may be filtered with cpu_possible_mask).
A: The actual cpumask filtered by wq_unbound_cpumask. If the filtering
leaves no CPU, wq_unbound_cpumask is used.
P: Per-pod subsets of #A.
wq->attrs stores #U, wq->dfl_pwq->pool->attrs->cpumask #A, and
wq->cpu_pwq[CPU]->pool->attrs->cpumask #P.
wq_update_pod() is called to update per-pod pwq's during CPU hotplug. To
calculate the new #P for each workqueue, it needs to call
wq_calc_pod_cpumask() with @attrs that contains #A. Currently,
wq_update_pod() achieves this by calling wq_calc_pod_cpumask() with
wq->dfl_pwq->pool->attrs.
This is rather fragile because we're calling wq_calc_pod_cpumask() with
@attrs of a worker_pool rather than the workqueue's actual attrs when what
we want to calculate is the workqueue's cpumask on the pod. While this works
fine currently, future changes will add fields which are used differently
between workqueues and worker_pools and this subtlety will bite us.
This patch factors out #U -> #A calculation from apply_wqattrs_prepare()
into wqattrs_actualize_cpumask and updates wq_update_pod() to copy
wq->unbound_attrs and use the new helper to obtain #A freshly instead of
abusing wq->dfl_pwq->pool_attrs.
This shouldn't cause any behavior changes in the current code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: K Prateek Nayak <kprateek.nayak@amd.com>
Reference: http://lkml.kernel.org/r/30625cdd-4d61-594b-8db9-6816b017dde3@amd.com
During boot, to initialize unbound CPU pods, wq_pod_init() was called from
workqueue_init(). This is early enough for NUMA nodes to be set up but
before SMP is brought up and CPU topology information is populated.
Workqueue is in the process of improving CPU locality for unbound workqueues
and will need access to topology information during pod init. This adds a
new init function workqueue_init_topology() which is called after CPU
topology information is available and replaces wq_pod_init().
As unbound CPU pods are now initialized after workqueues are activated, we
need to revisit the workqueues to apply the pod configuration. Workqueues
which are created before workqueue_init_topology() are set up so that they
always use the default worker pool. After pods are set up in
workqueue_init_topology(), wq_update_pod() is called on all existing
workqueues to update the pool associations accordingly.
Note that wq_update_pod_attrs_buf allocation is moved to
workqueue_init_early(). This isn't necessary right now but enables further
generalization of pod handling in the future.
This patch changes the initialization sequence but the end result should be
the same.
Signed-off-by: Tejun Heo <tj@kernel.org>
wq_pod_init() is called from workqueue_init() and responsible for
initializing unbound CPU pods according to NUMA node. Workqueue is in the
process of improving affinity awareness and wants to use other topology
information to initialize unbound CPU pods; however, unlike NUMA nodes,
other topology information isn't yet available in workqueue_init().
The next patch will introduce a later stage init function for workqueue
which will be responsible for initializing unbound CPU pods. Relocate
wq_pod_init() below workqueue_init() where the new init function is going to
be located so that the diff can show the content differences.
Just a relocation. No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Workqueue is in the process of improving CPU affinity awareness. It will
become more flexible and won't be tied to NUMA node boundaries. This patch
renames all NUMA related names in workqueue.c to use "pod" instead.
While "pod" isn't a very common term, it short and captures the grouping of
CPUs well enough. These names are only going to be used within workqueue
implementation proper, so the specific naming doesn't matter that much.
* wq_numa_possible_cpumask -> wq_pod_cpus
* wq_numa_enabled -> wq_pod_enabled
* wq_update_unbound_numa_attrs_buf -> wq_update_pod_attrs_buf
* workqueue_select_cpu_near -> select_numa_node_cpu
This rename is different from others. The function is only used by
queue_work_node() and specifically tries to find a CPU in the specified
NUMA node. As workqueue affinity will become more flexible and untied from
NUMA, this function's name should specifically describe that it's for
NUMA.
* wq_calc_node_cpumask -> wq_calc_pod_cpumask
* wq_update_unbound_numa -> wq_update_pod
* wq_numa_init -> wq_pod_init
* node -> pod in local variables
Only renames. No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
With the recent removal of NUMA related module param and sysfs knob,
workqueue_attrs->no_numa is now only used to implement ordered workqueues.
Let's rename the field so that it's less confusing especially with the
planned CPU affinity awareness improvements.
Just a rename. No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
A pwq (pool_workqueue) represents an association between a workqueue and a
worker_pool. When a work item is queued, the workqueue selects the pwq to
use, which in turn determines the pool, and queues the work item to the pool
through the pwq. pwq is also what implements the maximum concurrency limit -
@max_active.
As a per-cpu workqueue should be assocaited with a different worker_pool on
each CPU, it always had per-cpu pwq's that are accessed through wq->cpu_pwq.
However, unbound workqueues were sharing a pwq within each NUMA node by
default. The sharing has several downsides:
* Because @max_active is per-pwq, the meaning of @max_active changes
depending on the machine configuration and whether workqueue NUMA locality
support is enabled.
* Makes per-cpu and unbound code deviate.
* Gets in the way of making workqueue CPU locality awareness more flexible.
This patch makes unbound workqueues use per-cpu pwq's the same way per-cpu
workqueues do by making the following changes:
* wq->numa_pwq_tbl[] is removed and unbound workqueues now use wq->cpu_pwq
just like per-cpu workqueues. wq->cpu_pwq is now RCU protected for unbound
workqueues.
* numa_pwq_tbl_install() is renamed to install_unbound_pwq() and installs
the specified pwq to the target CPU's wq->cpu_pwq.
* apply_wqattrs_prepare() now always allocates a separate pwq for each CPU
unless the workqueue is ordered. If ordered, all CPUs use wq->dfl_pwq.
This makes the return value of wq_calc_node_cpumask() unnecessary. It now
returns void.
* @max_active now means the same thing for both per-cpu and unbound
workqueues. WQ_UNBOUND_MAX_ACTIVE now equals WQ_MAX_ACTIVE and
documentation is updated accordingly. WQ_UNBOUND_MAX_ACTIVE is no longer
used in workqueue implementation and will be removed later.
* All unbound pwq operations which used to be per-numa-node are now per-cpu.
For most unbound workqueue users, this shouldn't cause noticeable changes.
Work item issue and completion will be a small bit faster, flush_workqueue()
would become a bit more expensive, and the total concurrency limit would
likely become higher. All @max_active==1 use cases are currently being
audited for conversion into alloc_ordered_workqueue() and they shouldn't be
affected once the audit and conversion is complete.
One area where the behavior change may be more noticeable is
workqueue_congested() as the reported congestion state is now per CPU
instead of NUMA node. There are only two users of this interface -
drivers/infiniband/hw/hfi1 and net/smc. Maintainers of both subsystems are
cc'd. Inputs on the behavior change would be very much appreciated.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Karsten Graul <kgraul@linux.ibm.com>
Cc: Wenjia Zhang <wenjia@linux.ibm.com>
Cc: Jan Karcher <jaka@linux.ibm.com>
When a CPU went online or offline, wq_update_unbound_numa() was called only
on the CPU which was going up or down. This works fine because all CPUs on
the same NUMA node share the same pool_workqueue slot - one CPU updating it
updates it for everyone in the node.
However, future changes will make each CPU use a separate pool_workqueue
even when they're sharing the same worker_pool, which requires updating
pool_workqueue's for all CPUs which may be sharing the same pool_workqueue
on hotplug.
To accommodate the planned changes, this patch updates
workqueue_on/offline_cpu() so that they call wq_update_unbound_numa() for
all CPUs sharing the same NUMA node as the CPU going up or down. In the
current code, the second+ calls would be noops and there shouldn't be any
behavior changes.
* As wq_update_unbound_numa() is now called on multiple CPUs per each
hotplug event, @cpu is renamed to @hotplug_cpu and another @cpu argument
is added. The former indicates the CPU being hot[un]plugged and the latter
the CPU whose pool_workqueue is being updated.
* In wq_update_unbound_numa(), cpu_off is renamed to off_cpu for consistency
with the new @hotplug_cpu.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, all per-cpu pwq's (pool_workqueue's) are allocated directly
through a per-cpu allocation and thus, unlike unbound workqueues, not
reference counted. This difference in lifetime management between the two
types is a bit confusing.
Unbound workqueues are currently accessed through wq->numa_pwq_tbl[] which
isn't suitiable for the planned CPU locality related improvements. The plan
is to unify pwq handling across per-cpu and unbound workqueues so that
they're always accessed through wq->cpu_pwq.
In preparation, this patch makes per-cpu pwq's to be allocated, reference
counted and released the same way as unbound pwq's. wq->cpu_pwq now holds
pointers to pwq's instead of containing them directly.
pwq_unbound_release_workfn() is renamed to pwq_release_workfn() as it's now
also used for per-cpu work items.
Signed-off-by: Tejun Heo <tj@kernel.org>
pool_workqueue release path is currently bounced to system_wq; however, this
is a bit tricky because this bouncing occurs while holding a pool lock and
thus has risk of causing a A-A deadlock. This is currently addressed by the
fact that only unbound workqueues use this bouncing path and system_wq is a
per-cpu workqueue.
While this works, it's brittle and requires a work-around like setting the
lockdep subclass for the lock of unbound pools. Besides, future changes will
use the bouncing path for per-cpu workqueues too making the current approach
unusable.
Let's just use a dedicated kthread_worker to untangle the dependency. This
is just one more kthread for all workqueues and makes the pwq release logic
simpler and more robust.
Signed-off-by: Tejun Heo <tj@kernel.org>
Unbound workqueue CPU affinity is going to receive an overhaul and the NUMA
specific knobs won't make sense anymore. Remove them. Also, the pool_ids
knob was used for debugging and not really meaningful given that there is no
visibility into the pools associated with those IDs. Remove it too. A future
patch will improve overall visibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Collect first_idle_worker(), worker_enter/leave_idle(),
find_worker_executing_work(), move_linked_works() and wake_up_worker() into
one place. These functions will later be used to implement higher level
worker management logic.
No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
wq->cpu_pwqs is a percpu variable carraying one pointer to a pool_workqueue.
The field name being plural is unusual and confusing. Rename it to singular.
This patch doesn't cause any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
insert_work() always tried to wake up a worker; however, the only time it
needs to try to wake up a worker is when a new active work item is queued.
When a work item goes on the inactive list or queueing a flush work item,
there's no reason to try to wake up a worker.
This patch moves the worker wakeup logic out of insert_work() and places it
in the active new work item queueing path in __queue_work().
While at it:
* __queue_work() is dereferencing pwq->pool repeatedly. Add local variable
pool.
* Every caller of insert_work() calls debug_work_activate(). Consolidate the
invocations into insert_work().
* In __queue_work() pool->watchdog_ts update is relocated slightly. This is
to better accommodate future changes.
This makes wakeups more precise and will help the planned change to assign
work items to workers before waking them up. No behavior changes intended.
v2: WARN_ON_ONCE(pool != last_pool) added in __queue_work() to clarify as
suggested by Lai.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
* Drop the trivial optimization in worker_thread() where it bypasses calling
process_scheduled_works() if the first work item isn't linked. This is a
mostly pointless micro optimization and gets in the way of improving the
work processing path.
* Consolidate pool->watchdog_ts updates in the two callers into
process_scheduled_works().
Signed-off-by: Tejun Heo <tj@kernel.org>
worker->flags used to be accessed from scheduler hooks without grabbing
pool->lock for concurrency management. This is no longer true since
6d25be5782 ("sched/core, workqueues: Distangle worker accounting from rq
lock"). Also, it's unclear why worker_pool->flags was using the "X" rule.
All relevant users are accessing it under the pool lock.
Let's drop the special "X" rule and use the "L" rule for these flag fields
instead. While at it, replace the CONTEXT comment with
lockdep_assert_held().
This allows worker_set/clr_flags() to be used from context which isn't the
worker itself. This will be used later to implement assinging work items to
workers before waking them up so that workqueue can have better control over
which worker executes which work item on which CPU.
The only actual changes are sanity checks. There shouldn't be any visible
behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Unbound workqueue execution locality improvement patchset is about to
applied which will cause merge conflicts with changes in for-6.5-fixes.
Let's avoid future merge conflict by pulling in for-6.5-fixes.
Signed-off-by: Tejun Heo <tj@kernel.org>
wq_cpu_intensive_thresh_us is used to detect CPU-hogging per-cpu work items.
Once detected, they're excluded from concurrency management to prevent them
from blocking other per-cpu work items. If CONFIG_WQ_CPU_INTENSIVE_REPORT is
enabled, repeat offenders are also reported so that the code can be updated.
The default threshold is 10ms which is long enough to do fair bit of work on
modern CPUs while short enough to be usually not noticeable. This
unfortunately leads to a lot of, arguable spurious, detections on very slow
CPUs. Using the same threshold across CPUs whose performance levels may be
apart by multiple levels of magnitude doesn't make whole lot of sense.
This patch scales up wq_cpu_intensive_thresh_us upto 1 second when BogoMIPS
is below 4000. This is obviously very inaccurate but it doesn't have to be
accurate to be useful. The mechanism is still useful when the threshold is
fully scaled up and the benefits of reports are usually shared with everyone
regardless of who's reporting, so as long as there are sufficient number of
fast machines reporting, we don't lose much.
Some (or is it all?) ARM CPUs systemtically report significantly lower
BogoMIPS. While this doesn't break anything, given how widespread ARM CPUs
are, it's at least a missed opportunity and it probably would be a good idea
to teach workqueue about it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Motivation of doing this is to better improve boot times for devices when
we want to prevent our workqueue works from running on some specific CPUs,
e,g, some CPUs are busy with interrupts.
Signed-off-by: tiozhang <tiozhang@didiglobal.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Based on commit c4f135d643 ("workqueue: Wrap flush_workqueue() using
a macro"), all in-tree users stopped flushing system-wide workqueues.
Therefore, start emitting runtime message so that all out-of-tree users
will understand that they need to update their code.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull workqueue updates from Tejun Heo:
- Concurrency-managed per-cpu work items that hog CPUs and delay the
execution of other work items are now automatically detected and
excluded from concurrency management. Reporting on such work items
can also be enabled through a config option.
- Added tools/workqueue/wq_monitor.py which improves visibility into
workqueue usages and behaviors.
- Arnd's minimal fix for gcc-13 enum warning on 32bit compiles,
superseded by commit afa4bb778e in mainline.
* tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Disable per-cpu CPU hog detection when wq_cpu_intensive_thresh_us is 0
workqueue: Fix WARN_ON_ONCE() triggers in worker_enter_idle()
workqueue: fix enum type for gcc-13
workqueue: Track and monitor per-workqueue CPU time usage
workqueue: Report work funcs that trigger automatic CPU_INTENSIVE mechanism
workqueue: Automatically mark CPU-hogging work items CPU_INTENSIVE
workqueue: Improve locking rule description for worker fields
workqueue: Move worker_set/clr_flags() upwards
workqueue: Re-order struct worker fields
workqueue: Add pwq->stats[] and a monitoring script
Further upgrade queue_work_on() comment
Dave Airlie reports that gcc-13.1.1 has started complaining about some
of the workqueue code in 32-bit arm builds:
kernel/workqueue.c: In function ‘get_work_pwq’:
kernel/workqueue.c:713:24: error: cast to pointer from integer of different size [-Werror=int-to-pointer-cast]
713 | return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
| ^
[ ... a couple of other cases ... ]
and while it's not immediately clear exactly why gcc started complaining
about it now, I suspect it's some C23-induced enum type handlign fixup in
gcc-13 is the cause.
Whatever the reason for starting to complain, the code and data types
are indeed disgusting enough that the complaint is warranted.
The wq code ends up creating various "helper constants" (like that
WORK_STRUCT_WQ_DATA_MASK) using an enum type, which is all kinds of
confused. The mask needs to be 'unsigned long', not some unspecified
enum type.
To make matters worse, the actual "mask and cast to a pointer" is
repeated a couple of times, and the cast isn't even always done to the
right pointer, but - as the error case above - to a 'void *' with then
the compiler finishing the job.
That's now how we roll in the kernel.
So create the masks using the proper types rather than some ambiguous
enumeration, and use a nice helper that actually does the type
conversion in one well-defined place.
Incidentally, this magically makes clang generate better code. That,
admittedly, is really just a sign of clang having been seriously
confused before, and cleaning up the typing unconfuses the compiler too.
Reported-by: Dave Airlie <airlied@gmail.com>
Link: https://lore.kernel.org/lkml/CAPM=9twNnV4zMCvrPkw3H-ajZOH-01JVh_kDrxdPYQErz8ZTdA@mail.gmail.com/
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>