Files
why3/stdlib/seq.mlw
2023-11-23 19:04:11 +01:00

630 lines
17 KiB
Plaintext

(** {1 Sequences}
This file provides a basic theory of sequences.
*)
(** {2 Sequences and basic operations} *)
module Seq
use int.Int
(** the polymorphic type of sequences *)
type seq 'a
(** `seq 'a` is an infinite type *)
meta "infinite_type" type seq
val function length (seq 'a) : int
axiom length_nonnegative:
forall s: seq 'a. 0 <= length s
val function get (seq 'a) int : 'a
(* FIXME requires { 0 <= i < length s } *)
(** `get s i` is the `i+1`-th element of sequence `s`
(the first element has index 0) *)
let function ([]) (s: seq 'a) (i: int) : 'a =
get s i
(** equality is extensional *)
val predicate (==) (s1 s2: seq 'a)
ensures { result <-> length s1 = length s2 &&
forall i: int. 0 <= i < length s1 -> s1[i] = s2[i] }
ensures { result -> s1 = s2 }
(** sequence comprehension *)
val function create (len: int) (f: int -> 'a) : seq 'a
requires { 0 <= len }
ensures { length result = len }
ensures { forall i. 0 <= i < len -> result[i] = f i }
(*** FIXME: could be defined, but let constant does
not accept spec. *)
(*** let constant empty : seq 'a
ensures { length result = 0 }
= while false do variant { 0 } () done;
create 0 (fun _ requires { false } -> absurd)
*)
(** empty sequence *)
val constant empty : seq 'a
ensures { length result = 0 }
(** `set s i v` is a new sequence `u` such that
`u[i] = v` and `u[j] = s[j]` otherwise *)
let function set (s:seq 'a) (i:int) (v:'a) : seq 'a
requires { 0 <= i < length s }
ensures { length result = length s }
ensures { result[i] = v }
ensures { forall j. 0 <= j < length s /\ j <> i -> result[j] = s[j] }
= while false do variant { 0 } () done;
create s.length (fun j -> if j = i then v else s[j])
(* FIXME: not a real alias because of spec, but should be. *)
let function ([<-]) (s: seq 'a) (i: int) (v: 'a) : seq 'a
requires { 0 <= i < length s }
= set s i v
(** singleton sequence *)
let function singleton (v:'a) : seq 'a
ensures { length result = 1 }
ensures { result[0] = v }
= while false do variant { 0 } () done;
create 1 (fun _ -> v)
(** insertion of elements on both sides *)
let function cons (x:'a) (s:seq 'a) : seq 'a
ensures { length result = 1 + length s }
ensures { result[0] = x }
ensures { forall i. 0 < i <= length s -> result[i] = s[i-1] }
= while false do variant { 0 } () done;
create (1 + length s) (fun i -> if i = 0 then x else s[i-1])
let function snoc (s:seq 'a) (x:'a) : seq 'a
ensures { length result = 1 + length s }
ensures { result[length s] = x }
ensures { forall i. 0 <= i < length s -> result[i] = s[i] }
= while false do variant { 0 } () done;
create (1 + length s) (fun i -> if i = length s then x else s[i])
(** `s[i..j]` is the sub-sequence of `s` from element `i` included
to element `j` excluded *)
let function ([..]) (s:seq 'a) (i:int) (j:int) : seq 'a
requires { 0 <= i <= j <= length s }
ensures { length result = j - i }
ensures { forall k. 0 <= k < j - i -> result[k] = s[i + k] }
= while false do variant { 0 } () done;
create (j-i) (fun k -> s[i+k])
(* FIXME: spec/alias *)
let function ([_..]) (s: seq 'a) (i: int) : seq 'a
requires { 0 <= i <= length s }
= s[i .. length s]
(* FIXME: spec/alias *)
let function ([.._]) (s: seq 'a) (j: int) : seq 'a
requires { 0 <= j <= length s }
= s[0 .. j]
(** concatenation *)
let function (++) (s1:seq 'a) (s2:seq 'a) : seq 'a
ensures { length result = length s1 + length s2 }
ensures { forall i. 0 <= i < length s1 -> result[i] = s1[i] }
ensures { forall i. length s1 <= i < length result ->
result[i] = s2[i - length s1] }
= while false do variant { 0 } () done;
let l = length s1 in
create (l + length s2)
(fun i -> if i < l then s1[i] else s2[i-l])
end
(** {2 Lemma library about algebraic interactions between
`empty`/`singleton`/`cons`/`snoc`/`++`/`[ .. ]`} *)
module FreeMonoid
use int.Int
use Seq
(* Monoidal properties/simplification. *)
let lemma associative (s1 s2 s3:seq 'a)
ensures { s1 ++ (s2 ++ s3) = (s1 ++ s2) ++ s3 }
= if not (s1 ++ s2) ++ s3 == s1 ++ (s2 ++ s3) then absurd
meta rewrite axiom associative
let lemma left_neutral (s:seq 'a)
ensures { empty ++ s = s }
= if not empty ++ s == s then absurd
meta rewrite axiom left_neutral
let lemma right_neutral (s:seq 'a)
ensures { s ++ empty = s }
= if not s ++ empty == s then absurd
meta rewrite axiom right_neutral
let lemma cons_def (x:'a) (s:seq 'a)
ensures { cons x s = singleton x ++ s }
= if not cons x s == singleton x ++ s then absurd
meta rewrite axiom cons_def
let lemma snoc_def (s:seq 'a) (x:'a)
ensures { snoc s x = s ++ singleton x }
= if not snoc s x == s ++ singleton x then absurd
meta rewrite axiom snoc_def
let lemma double_sub_sequence (s:seq 'a) (i j k l:int)
requires { 0 <= i <= j <= length s }
requires { 0 <= k <= l <= j - i }
ensures { s[i .. j][k .. l] = s[k+i .. l+i] }
= if not s[i .. j][k .. l] == s[k+i .. l+i] then absurd
(* Inverting cons/snoc/catenation *)
let lemma cons_back (x:'a) (s:seq 'a)
ensures { (cons x s)[1 ..] = s }
= if not (cons x s)[1 ..] == s then absurd
let lemma snoc_back (s:seq 'a) (x:'a)
ensures { (snoc s x)[.. length s] = s }
= if not (snoc s x)[.. length s] == s then absurd
let lemma cat_back (s1 s2:seq 'a)
ensures { (s1 ++ s2)[.. length s1] = s1 }
ensures { (s1 ++ s2)[length s1 ..] = s2 }
= let c = s1 ++ s2 in let l = length s1 in
if not (c[.. l] == s1 || c[l ..] == s2) then absurd
(* Decomposing sequences as cons/snoc/catenation/empty/singleton *)
let lemma cons_dec (s:seq 'a)
requires { length s >= 1 }
ensures { s = cons s[0] s[1 ..] }
= if not s == cons s[0] s[1 ..] then absurd
let lemma snoc_dec (s:seq 'a)
requires { length s >= 1 }
ensures { s = snoc s[.. length s - 1] s[length s - 1] }
= if not s == snoc s[.. length s - 1] s[length s - 1] then absurd
let lemma cat_dec (s:seq 'a) (i:int)
requires { 0 <= i <= length s }
ensures { s = s[.. i] ++ s[i ..] }
= if not s == s[.. i] ++ s[i ..] then absurd
let lemma empty_dec (s:seq 'a)
requires { length s = 0 }
ensures { s = empty }
= if not s == empty then absurd
let lemma singleton_dec (s:seq 'a)
requires { length s = 1 }
ensures { s = singleton s[0] }
= if not s == singleton s[0] then absurd
end
module ToList
use int.Int
use Seq
use list.List
val function to_list (a: seq 'a) : list 'a
axiom to_list_empty:
to_list (empty: seq 'a) = (Nil: list 'a)
axiom to_list_cons:
forall s: seq 'a. 0 < length s ->
to_list s = Cons s[0] (to_list s[1 ..])
use list.Length as ListLength
lemma to_list_length:
forall s: seq 'a. ListLength.length (to_list s) = length s
use list.Nth as ListNth
use option.Option
lemma to_list_nth:
forall s: seq 'a, i: int. 0 <= i < length s ->
ListNth.nth i (to_list s) = Some s[i]
let rec lemma to_list_def_cons (s: seq 'a) (x: 'a)
variant { length s }
ensures { to_list (cons x s) = Cons x (to_list s) }
= assert { (cons x s)[1 ..] == s }
end
module OfList
use int.Int
use option.Option
use list.List
use list.Length as L
use list.Nth
use Seq
use list.Append
let rec function of_list (l: list 'a) : seq 'a = match l with
| Nil -> empty
| Cons x r -> cons x (of_list r)
end
lemma length_of_list:
forall l: list 'a. length (of_list l) = L.length l
predicate point_wise (s: seq 'a) (l: list 'a) =
forall i. 0 <= i < L.length l -> Some (get s i) = nth i l
lemma elts_seq_of_list: forall l: list 'a.
point_wise (of_list l) l
lemma is_of_list: forall l: list 'a, s: seq 'a.
L.length l = length s -> point_wise s l -> s == of_list l
let rec lemma of_list_app (l1 l2: list 'a)
ensures { of_list (l1 ++ l2) == Seq.(++) (of_list l1) (of_list l2) }
variant { l1 }
= match l1 with
| Nil -> ()
| Cons _ r -> of_list_app r l2
end
lemma of_list_app_length: forall l1 [@induction] l2: list 'a.
length (of_list (l1 ++ l2)) = L.length l1 + L.length l2
let rec lemma of_list_snoc (l: list 'a) (x: 'a)
variant { l }
ensures { of_list (l ++ Cons x Nil) == snoc (of_list l) x }
= match l with
| Nil -> assert { snoc empty x = cons x empty }
| Cons _ r -> of_list_snoc r x;
end
meta coercion function of_list
use ToList
lemma convolution_to_of_list: forall l: list 'a.
to_list (of_list l) = l
end
module Mem
use int.Int
use Seq
predicate mem (x: 'a) (s: seq 'a) =
exists i: int. 0 <= i < length s && s[i] = x
lemma mem_append : forall x: 'a, s1 s2.
mem x (s1 ++ s2) <-> mem x s1 \/ mem x s2
lemma mem_tail: forall x: 'a, s.
length s > 0 ->
mem x s <-> (x = s[0] \/ mem x s[1 .. ])
end
module Distinct
use int.Int
use Seq
predicate distinct (s : seq 'a) =
forall i j. 0 <= i < length s -> 0 <= j < length s ->
i <> j -> s[i] <> s[j]
end
module Reverse
use int.Int
use Seq
let function reverse (s: seq 'a) : seq 'a =
create (length s) (fun i -> s[length s - 1 - i])
end
module ToFset
use int.Int
use set.Fset
use Mem
use Seq
val function to_set (s: seq 'a) : fset 'a
axiom to_set_empty: to_set (empty: seq 'a) = (Fset.empty: fset 'a)
axiom to_set_add: forall s: seq 'a. length s > 0 ->
to_set s = add s[0] (to_set s[1 ..])
lemma to_set_cardinal: forall s: seq 'a.
cardinal (to_set s) <= length s
lemma to_set_mem: forall s: seq 'a, e: 'a.
mem e s <-> Fset.mem e (to_set s)
lemma to_set_snoc: forall s: seq 'a, x: 'a.
to_set (snoc s x) = add x (to_set s)
use Distinct
lemma to_set_cardinal_distinct: forall s: seq 'a. distinct s ->
cardinal (to_set s) = length s
end
(** {2 Sorted Sequences} *)
module Sorted
use int.Int
use Seq
type t
predicate le t t
clone relations.TotalPreOrder as TO with
type t = t, predicate rel = le, axiom .
predicate sorted_sub (s: seq t) (l u: int) =
forall i1 i2. l <= i1 <= i2 < u -> le s[i1] s[i2]
(** `sorted_sub s l u` is true whenever the sub-sequence `s[l .. u-1]` is
sorted w.r.t. order relation `le` *)
predicate sorted (s: seq t) =
sorted_sub s 0 (length s)
(** `sorted s` is true whenever the sequence `s` is sorted w.r.t `le` *)
lemma sorted_cons:
forall x: t, s: seq t.
(forall i: int. 0 <= i < length s -> le x s[i]) /\ sorted s <->
sorted (cons x s)
lemma sorted_append:
forall s1 s2: seq t.
(sorted s1 /\ sorted s2 /\
(forall i j: int. 0 <= i < length s1 /\ 0 <= j < length s2 ->
le s1[i] s2[j])) <-> sorted (s1 ++ s2)
lemma sorted_snoc:
forall x: t, s: seq t.
(forall i: int. 0 <= i < length s -> le s[i] x) /\ sorted s <->
sorted (snoc s x)
end
module SortedInt (** sorted sequences of integers *)
use int.Int
clone export Sorted with type t = int, predicate le = (<=), goal .
end
module Sum
use int.Int
use Seq
use int.Sum as S
function sum (s: seq int) : int = S.sum (fun i -> s[i]) 0 (length s)
lemma sum_snoc:
forall s x. sum (snoc s x) = sum s + x
lemma sum_tail:
forall s. length s >= 1 -> sum s = s[0] + sum s[1 .. ]
lemma sum_tail_tail:
forall s. length s >= 2 -> sum s = s[0] + s[1] + sum s[2 .. ]
end
(** {2 Number of occurrences in a sequence} *)
module Occ
use int.Int
use int.NumOf as N
use Seq
function iseq (x: 'a) (s: seq 'a) : int->bool = fun i -> s[i] = x
function occ (x: 'a) (s: seq 'a) (l u: int) : int = N.numof (iseq x s) l u
function occ_all (x: 'a) (s: seq 'a) : int =
occ x s 0 (length s)
lemma occ_cons:
forall k: 'a, s: seq 'a, x: 'a.
(occ_all k (cons x s) =
if k = x then 1 + occ_all k s else occ_all k s
) by (cons x s == (cons x empty) ++ s)
lemma occ_snoc:
forall k: 'a, s: seq 'a, x: 'a.
occ_all k (snoc s x) =
if k = x then 1 + occ_all k s else occ_all k s
lemma occ_tail:
forall k: 'a, s: seq 'a.
length s > 0 ->
(occ_all k s[1..] =
if k = s[0] then (occ_all k s) - 1 else occ_all k s
) by (s == cons s[0] s[1..])
lemma append_num_occ:
forall x: 'a, s1 s2: seq 'a.
occ_all x (s1 ++ s2) =
occ_all x s1 + occ_all x s2
end
(** {2 Sequences Equality} *)
module SeqEq
use int.Int
use Seq
predicate seq_eq_sub (s1 s2: seq 'a) (l u: int) =
forall i. l <= i < u -> s1[i] = s2[i]
end
module Exchange
use int.Int
use Seq
predicate exchange (s1 s2: seq 'a) (i j: int) =
length s1 = length s2 /\
0 <= i < length s1 /\ 0 <= j < length s1 /\
s1[i] = s2[j] /\ s1[j] = s2[i] /\
(forall k:int. 0 <= k < length s1 -> k <> i -> k <> j -> s1[k] = s2[k])
lemma exchange_set :
forall s: seq 'a, i j: int.
0 <= i < length s -> 0 <= j < length s ->
exchange s s[i <- s[j]][j <- s[i]] i j
end
(** {2 Permutation of sequences} *)
module Permut
use int.Int
use Seq
use Occ
use SeqEq
use export Exchange
predicate permut (s1 s2: seq 'a) (l u: int) =
length s1 = length s2 /\
0 <= l <= length s1 /\ 0 <= u <= length s1 /\
forall v: 'a. occ v s1 l u = occ v s2 l u
(** `permut s1 s2 l u` is true when the segment `s1[l..u-1]` is a
permutation of the segment `s2[l..u-1]`. Values outside this range are
ignored. *)
predicate permut_sub (s1 s2: seq 'a) (l u: int) =
seq_eq_sub s1 s2 0 l /\
permut s1 s2 l u /\
seq_eq_sub s1 s2 u (length s1)
(** `permut_sub s1 s2 l u` is true when the segment `s1[l..u-1]` is a
permutation of the segment `s2[l..u-1]` and values outside this range
are equal. *)
predicate permut_all (s1 s2: seq 'a) =
length s1 = length s2 /\ permut s1 s2 0 (length s1)
(** `permut_all s1 s2` is true when sequence `s1` is a permutation of
sequence `s2` *)
lemma exchange_permut_sub:
forall s1 s2: seq 'a, i j l u: int.
exchange s1 s2 i j -> l <= i < u -> l <= j < u ->
0 <= l -> u <= length s1 -> permut_sub s1 s2 l u
(** enlarge the interval *)
lemma Permut_sub_weakening:
forall s1 s2: seq 'a, l1 u1 l2 u2: int.
permut_sub s1 s2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length s1 ->
permut_sub s1 s2 l2 u2
(** {3 Lemmas about permut} *)
lemma permut_refl: forall s: seq 'a, l u: int.
0 <= l <= length s -> 0 <= u <= length s ->
permut s s l u
lemma permut_sym: forall s1 s2: seq 'a, l u: int.
permut s1 s2 l u -> permut s2 s1 l u
lemma permut_trans:
forall s1 s2 s3: seq 'a, l u: int.
permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u
lemma permut_exists:
forall s1 s2: seq 'a, l u i: int.
permut s1 s2 l u -> l <= i < u ->
exists j: int. l <= j < u /\ s1[j] = s2[i]
(** {3 Lemmas about permut_all} *)
use Mem
lemma permut_all_mem: forall s1 s2: seq 'a. permut_all s1 s2 ->
forall x. mem x s1 <-> mem x s2
lemma exchange_permut_all:
forall s1 s2: seq 'a, i j: int.
exchange s1 s2 i j -> permut_all s1 s2
end
module FoldLeft
use Seq
use int.Int
(** `fold_left f a [b1; ...; bn]` is `f (... (f (f a b1) b2) ...) bn` *)
let rec function fold_left (f: 'a -> 'b -> 'a) (acc: 'a) (s: seq 'b) : 'a
variant { length s }
= if length s = 0 then acc else fold_left f (f acc s[0]) s[1 ..]
lemma fold_left_ext: forall f: 'b -> 'a -> 'b, acc: 'b, s1 s2: seq 'a.
s1 == s2 -> fold_left f acc s1 = fold_left f acc s2
lemma fold_left_cons: forall s: seq 'a, x: 'a, f: 'b -> 'a -> 'b, acc: 'b.
fold_left f acc (cons x s) = fold_left f (f acc x) s
let rec lemma fold_left_app (s1 s2: seq 'a) (f: 'b -> 'a -> 'b) (acc: 'b)
ensures { fold_left f acc (s1 ++ s2) = fold_left f (fold_left f acc s1) s2 }
variant { Seq.length s1 }
= if Seq.length s1 > 0 then fold_left_app s1[1 ..] s2 f (f acc (Seq.get s1 0))
end
module FoldRight
use Seq
use int.Int
(** `fold_right f [a1; ...; an] b` is `f a1 (f a2 (... (f an b) ...))` *)
let rec function fold_right (f: 'b -> 'a -> 'a) (s: seq 'b) (acc: 'a) : 'a
variant { length s }
= if length s = 0 then acc
else let acc = f s[length s - 1] acc in fold_right f s[.. length s - 1] acc
lemma fold_right_ext: forall f: 'a -> 'b -> 'b, acc: 'b, s1 s2: seq 'a.
s1 == s2 -> fold_right f s1 acc = fold_right f s2 acc
lemma fold_right_snoc: forall s: seq 'a, x: 'a, f: 'a -> 'b -> 'b, acc: 'b.
fold_right f (snoc s x) acc = fold_right f s (f x acc)
end
(*** TODO / TO DISCUSS
- what about s[i..j] when i..j is not a valid range?
left undefined? empty sequence?
- what about negative index e.g. s[-3..] for the last three elements?
- a syntax for cons and snoc?
- create: better name? move to a separate theory?
- UNPLEASANT: we cannot write s[1..] because 1. is recognized as a float
so we have to write s[1 ..]
- UNPLEASANT: when using both arrays and sequences, the lack of overloading
is a pain; see for instance vstte12_ring_buffer.mlw
*)