Files
why3/stdlib/array.mlw
Benedikt Becker 1bb0c818f5 Separate logical and program function Array.make
When defined as a `val function` the postcondition of the program function
`make` is just `result = make n v`, referring to the logical function `make`.
But the equality cannot be proven because array equality is not defined.

To facilitate proofs about results of the program functions `make`, this
commit separates the definitions of the logical function from the program
function `make`, so that the postconditions of the program function `make`
refer to the properties of the resulting arrey.
2021-01-15 12:39:37 +01:00

501 lines
15 KiB
Plaintext

(** {1 Arrays} *)
(** {2 Generic Arrays}
The length is a non-mutable field, so that we get for free that
modification of an array does not modify its length.
*)
module Array
use int.Int
use map.Map
type array [@extraction:array] 'a = private {
mutable ghost elts : int -> 'a;
length : int
} invariant { 0 <= length }
function ([]) (a: array 'a) (i: int) : 'a = a.elts i
val ([]) (a: array 'a) (i: int) : 'a
requires { [@expl:index in array bounds] 0 <= i < length a }
ensures { result = a[i] }
val ghost function ([<-]) (a: array 'a) (i: int) (v: 'a): array 'a
ensures { result.length = a.length }
ensures { result.elts = Map.set a.elts i v }
val ([]<-) (a: array 'a) (i: int) (v: 'a) : unit writes {a}
requires { [@expl:index in array bounds] 0 <= i < length a }
ensures { a.elts = Map.set (old a).elts i v }
ensures { a = (old a)[i <- v] }
(** unsafe get/set operations with no precondition *)
exception OutOfBounds
let defensive_get (a: array 'a) (i: int)
ensures { 0 <= i < length a /\ result = a[i] }
raises { OutOfBounds -> i < 0 \/ i >= length a }
= if i < 0 || i >= length a then raise OutOfBounds;
a[i]
let defensive_set (a: array 'a) (i: int) (v: 'a)
ensures { 0 <= i < length a }
ensures { a = (old a)[i <- v] }
raises { OutOfBounds -> (i < 0 \/ i >= length a) /\ a = old a }
= if i < 0 || i >= length a then raise OutOfBounds;
a[i] <- v
function make (n: int) (v: 'a) : array 'a
axiom make_spec : forall n:int, v:'a.
n >= 0 ->
(forall i:int. 0 <= i < n -> (make n v)[i] = v) /\
length (make n v) = n
val make [@extraction:array_make] (n: int) (v: 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = v }
ensures { result.length = n }
val empty () : array 'a
ensures { result.length = 0 }
let copy (a: array 'a) : array 'a
ensures { length result = length a }
ensures { forall i:int. 0 <= i < length result -> result[i] = a[i] }
=
let len = length a in
if len = 0 then empty ()
else begin
let b = make len a[0] in
for i = 1 to len - 1 do
invariant { forall k. 0 <= k < i -> b[k] = a[k] }
b[i] <- a[i]
done;
b
end
let sub (a: array 'a) (ofs: int) (len: int) : array 'a
requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
ensures { length result = len }
ensures { forall i:int. 0 <= i < len -> result[i] = a[ofs + i] }
=
if length a = 0 then begin
assert { len = 0 };
empty ()
end else begin
let b = make len a[0] in
for i = 0 to len-1 do
invariant { forall k. 0 <= k < i -> b[k] = a[ofs+k] }
b[i] <- a[ofs+i];
done;
b
end
let fill (a: array 'a) (ofs: int) (len: int) (v: 'a)
requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
ensures { forall i:int.
(0 <= i < ofs \/ ofs + len <= i < length a) -> a[i] = old a[i] }
ensures { forall i:int. ofs <= i < ofs + len -> a[i] = v }
=
for k = 0 to len - 1 do
invariant { forall i:int.
(0 <= i < ofs \/ ofs + len <= i < length a) -> a[i] = old a[i] }
invariant { forall i:int. ofs <= i < ofs + k -> a[i] = v }
a[ofs + k] <- v
done
let blit (a1: array 'a) (ofs1: int)
(a2: array 'a) (ofs2: int) (len: int) : unit writes {a2}
requires { 0 <= ofs1 /\ 0 <= len /\ ofs1 + len <= length a1 }
requires { 0 <= ofs2 /\ ofs2 + len <= length a2 }
ensures { forall i:int.
(0 <= i < ofs2 \/ ofs2 + len <= i < length a2) -> a2[i] = old a2[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len -> a2[i] = a1[ofs1 + i - ofs2] }
=
for i = 0 to len - 1 do
invariant { forall k. not (0 <= k < i) -> a2[ofs2 + k] = old a2[ofs2 + k] }
invariant { forall k. 0 <= k < i -> a2[ofs2 + k] = a1[ofs1 + k] }
a2[ofs2 + i] <- a1[ofs1 + i];
done
let append (a1: array 'a) (a2: array 'a) : array 'a
ensures { length result = length a1 + length a2 }
ensures { forall i. 0 <= i < length a1 -> result[i] = a1[i] }
ensures { forall i. 0 <= i < length a2 -> result[length a1 + i] = a2[i] }
=
if length a1 = 0 then copy a2
else begin
let a = make (length a1 + length a2) a1[0] in
blit a1 0 a 0 (length a1);
blit a2 0 a (length a1) (length a2);
a
end
let self_blit (a: array 'a) (ofs1: int) (ofs2: int) (len: int) : unit
writes {a}
requires { 0 <= ofs1 /\ 0 <= len /\ ofs1 + len <= length a }
requires { 0 <= ofs2 /\ ofs2 + len <= length a }
ensures { forall i:int.
(0 <= i < ofs2 \/ ofs2 + len <= i < length a) -> a[i] = old a[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len -> a[i] = old a[ofs1 + i - ofs2] }
=
if ofs1 <= ofs2 then (* from right to left *)
for k = len - 1 downto 0 do
invariant { forall i:int.
(0 <= i <= ofs2 + k \/ ofs2 + len <= i < length a) ->
a[i] = (old a)[i] }
invariant { forall i:int.
ofs2 + k < i < ofs2 + len -> a[i] = (old a)[ofs1 + i - ofs2] }
a[ofs2 + k] <- a[ofs1 + k]
done
else (* from left to right *)
for k = 0 to len - 1 do
invariant { forall i:int.
(0 <= i < ofs2 \/ ofs2 + k <= i < length a) ->
a[i] = (old a)[i] }
invariant { forall i:int.
ofs2 <= i < ofs2 + k -> a[i] = (old a)[ofs1 + i - ofs2] }
a[ofs2 + k] <- a[ofs1 + k]
done
(*** TODO?
- concat : 'a array list -> 'a array
- to_list
- of_list
*)
end
module Init
use int.Int
use export Array
let init (n: int) (f: int -> 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = f i }
ensures { result.length = n }
=
if n = 0 then empty ()
else begin
let a = make n (f 0) in
for i = 1 to n - 1 do
invariant { forall k. 0 <= k < i -> a[k] = f k }
a[i] <- f i
done;
a
end
end
(** {2 Sorted Arrays} *)
module IntArraySorted
use int.Int
use Array
clone map.MapSorted as M with type elt = int, predicate le = (<=)
predicate sorted_sub (a : array int) (l u : int) =
M.sorted_sub a.elts l u
(** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
is sorted w.r.t order relation `le` *)
predicate sorted (a : array int) =
M.sorted_sub a.elts 0 a.length
(** `sorted a` is true whenever the array `a` is sorted w.r.t `le` *)
end
module Sorted
use int.Int
use Array
type elt
predicate le elt elt
predicate sorted_sub (a: array elt) (l u: int) =
forall i1 i2 : int. l <= i1 < i2 < u -> le a[i1] a[i2]
(** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
is sorted w.r.t order relation `le` *)
predicate sorted (a: array elt) =
forall i1 i2 : int. 0 <= i1 < i2 < length a -> le a[i1] a[i2]
(** `sorted a` is true whenever the array `a` is sorted w.r.t `le` *)
end
(** {2 Arrays Equality} *)
module ArrayEq
use int.Int
use Array
use map.MapEq
predicate array_eq_sub (a1 a2: array 'a) (l u: int) =
a1.length = a2.length /\ 0 <= l <= a1.length /\ 0 <= u <= a1.length /\
map_eq_sub a1.elts a2.elts l u
predicate array_eq (a1 a2: array 'a) =
a1.length = a2.length /\ map_eq_sub a1.elts a2.elts 0 (length a1)
end
module ArrayExchange
use int.Int
use Array
use map.MapExchange as M
predicate exchange (a1 a2: array 'a) (i j: int) =
a1.length = a2.length /\
M.exchange a1.elts a2.elts 0 a1.length i j
(** `exchange a1 a2 i j` means that arrays `a1` and `a2` only differ
by the swapping of elements at indices `i` and `j` *)
end
(** {2 Permutation} *)
module ArrayPermut
use int.Int
use Array
use map.MapPermut as M
use map.MapEq
use ArrayEq
use export ArrayExchange
predicate permut (a1 a2: array 'a) (l u: int) =
a1.length = a2.length /\ 0 <= l <= a1.length /\ 0 <= u <= a1.length /\
M.permut a1.elts a2.elts l u
(** `permut a1 a2 l u` is true when the segment
`a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`.
Values outside of the interval `(l..u-1)` are ignored. *)
predicate permut_sub (a1 a2: array 'a) (l u: int) =
map_eq_sub a1.elts a2.elts 0 l /\
permut a1 a2 l u /\
map_eq_sub a1.elts a2.elts u (length a1)
(** `permut_sub a1 a2 l u` is true when the segment
`a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`
and values outside of the interval `(l..u-1)` are equal. *)
predicate permut_all (a1 a2: array 'a) =
a1.length = a2.length /\ M.permut a1.elts a2.elts 0 a1.length
(** `permut_all a1 a2 l u` is true when array `a1` is a permutation
of array `a2`. *)
lemma exchange_permut_sub:
forall a1 a2: array 'a, i j l u: int.
exchange a1 a2 i j -> l <= i < u -> l <= j < u ->
0 <= l -> u <= length a1 -> permut_sub a1 a2 l u
lemma permut_sub_trans:
forall a1 a2 a3: array 'a, l u: int.
0 <= l -> u <= length a1 -> permut_sub a1 a2 l u ->
permut_sub a2 a3 l u -> permut_sub a1 a3 l u
(** we can always enlarge the interval *)
lemma permut_sub_weakening:
forall a1 a2: array 'a, l1 u1 l2 u2: int.
permut_sub a1 a2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length a1 ->
permut_sub a1 a2 l2 u2
lemma exchange_permut_all:
forall a1 a2: array 'a, i j: int.
exchange a1 a2 i j -> permut_all a1 a2
end
module ArraySwap
use int.Int
use Array
use export ArrayExchange
let swap (a:array 'a) (i:int) (j:int) : unit
requires { 0 <= i < length a /\ 0 <= j < length a }
writes { a }
ensures { exchange (old a) a i j }
= let v = a[i] in
a[i] <- a[j];
a[j] <- v
end
(** {2 Sum of elements} *)
module ArraySum
use Array
use int.Sum as S
(** `sum a l h` is the sum of `a[i]` for `l <= i < h` *)
function sum (a: array int) (l h: int) : int = S.sum a.elts l h
end
(** {2 Number of array elements satisfying a given predicate} *)
module NumOf
use Array
use int.NumOf as N
(** the number of `a[i]` such that `l <= i < u` and `pr i a[i]` *)
function numof (pr: int -> 'a -> bool) (a: array 'a) (l u: int) : int =
N.numof (fun i -> pr i a[i]) l u
end
module NumOfEq
use Array
use int.NumOf as N
(** the number of `a[i]` such that `l <= i < u` and `a[i] = v` *)
function numof (a: array 'a) (v: 'a) (l u: int) : int =
N.numof (fun i -> a[i] = v) l u
end
module ToList
use int.Int
use Array
use list.List
let rec function to_list (a: array 'a) (l u: int) : list 'a
requires { l >= 0 /\ u <= a.length }
variant { u - l }
= if u <= l then Nil else Cons a[l] (to_list a (l+1) u)
use list.Append
let rec lemma to_list_append (a: array 'a) (l m u: int)
requires { 0 <= l <= m <= u <= a.length }
variant { m - l }
ensures { to_list a l m ++ to_list a m u = to_list a l u }
= if l < m then to_list_append a (l+1) m u
end
module ToSeq
use int.Int
use Array
use seq.Seq as S
let rec function to_seq_sub (a: array 'a) (l u: int) : S.seq 'a
requires { l >= 0 /\ u <= a.length }
variant { u - l }
= if u <= l then S.empty else S.cons a[l] (to_seq_sub a (l+1) u)
let rec lemma to_seq_length (a: array 'a) (l u: int)
requires { 0 <= l <= u <= length a }
variant { u - l }
ensures { S.length (to_seq_sub a l u) = u - l }
= if l < u then to_seq_length a (l+1) u
let rec lemma to_seq_nth (a: array 'a) (l i u: int)
requires { 0 <= l <= i < u <= length a }
variant { i - l }
ensures { S.get (to_seq_sub a l u) (i - l) = a[i] }
= if l < i then to_seq_nth a (l+1) i u
let function to_seq (a: array 'a) : S.seq 'a = to_seq_sub a 0 (length a)
meta coercion function to_seq
end
(** {2 Number of inversions in an array of integers}
We show that swapping two elements that are ill-sorted decreases
the number of inversions. Useful to prove the termination of
sorting algorithms that use swaps. *)
module Inversions
use Array
use ArrayExchange
use int.Int
use int.Sum
use int.NumOf
(* to prove termination, we count the total number of inversions *)
predicate inversion (a: array int) (i j: int) =
a[i] > a[j]
function inversions_for (a: array int) (i: int) : int =
numof (inversion a i) i (length a)
function inversions (a: array int) : int =
sum (inversions_for a) 0 (length a)
(* the key lemma to prove termination: whenever we swap two consecutive
values that are ill-sorted, the total number of inversions decreases *)
let lemma exchange_inversion (a1 a2: array int) (i0: int)
requires { 0 <= i0 < length a1 - 1 }
requires { a1[i0] > a1[i0 + 1] }
requires { exchange a1 a2 i0 (i0 + 1) }
ensures { inversions a2 < inversions a1 }
= assert { inversion a1 i0 (i0+1) };
assert { not (inversion a2 i0 (i0+1)) };
assert { forall i. 0 <= i < i0 ->
inversions_for a2 i = inversions_for a1 i
by numof (inversion a2 i) i (length a2)
= numof (inversion a2 i) i i0
+ numof (inversion a2 i) i0 (i0+1)
+ numof (inversion a2 i) (i0+1) (i0+2)
+ numof (inversion a2 i) (i0+2) (length a2)
/\ numof (inversion a1 i) i (length a1)
= numof (inversion a1 i) i i0
+ numof (inversion a1 i) i0 (i0+1)
+ numof (inversion a1 i) (i0+1) (i0+2)
+ numof (inversion a1 i) (i0+2) (length a1)
/\ numof (inversion a2 i) i0 (i0+1)
= numof (inversion a1 i) (i0+1) (i0+2)
/\ numof (inversion a2 i) (i0+1) (i0+2)
= numof (inversion a1 i) i0 (i0+1)
/\ numof (inversion a2 i) i i0 = numof (inversion a1 i) i i0
/\ numof (inversion a2 i) (i0+2) (length a2)
= numof (inversion a1 i) (i0+2) (length a1)
};
assert { forall i. i0 + 1 < i < length a1 ->
inversions_for a2 i = inversions_for a1 i };
assert { inversions_for a2 i0 = inversions_for a1 (i0+1)
by numof (inversion a1 (i0+1)) (i0+2) (length a1)
= numof (inversion a2 i0 ) (i0+2) (length a1) };
assert { 1 + inversions_for a2 (i0+1) = inversions_for a1 i0
by numof (inversion a1 i0) i0 (length a1)
= numof (inversion a1 i0) (i0+1) (length a1)
= 1 + numof (inversion a1 i0) (i0+2) (length a1)
= 1 + numof (inversion a2 (i0+1)) (i0+2) (length a2) };
let sum_decomp (a: array int) (i j k: int)
requires { 0 <= i <= j <= k <= length a = length a1 }
ensures { sum (inversions_for a) i k =
sum (inversions_for a) i j + sum (inversions_for a) j k }
= () in
let decomp (a: array int)
requires { length a = length a1 }
ensures { inversions a = sum (inversions_for a) 0 i0
+ inversions_for a i0
+ inversions_for a (i0+1)
+ sum (inversions_for a) (i0+2) (length a) }
= sum_decomp a 0 i0 (length a);
sum_decomp a i0 (i0+1) (length a);
sum_decomp a (i0+1) (i0+2) (length a);
in
decomp a1; decomp a2;
()
end