Files
why3/stdlib/list.mlw
2025-05-14 17:32:28 +02:00

645 lines
12 KiB
Plaintext

(** {1 Polymorphic Lists} *)
(** {2 Basic theory of polymorphic lists} *)
module List
type list 'a = Nil | Cons 'a (list 'a)
let predicate is_nil (l:list 'a)
ensures { result <-> l = Nil }
=
match l with Nil -> true | Cons _ _ -> false end
end
(** {2 Length of a list} *)
module Length
use int.Int
use List
let rec function length (l: list 'a) : int =
match l with
| Nil -> 0
| Cons _ r -> 1 + length r
end
lemma Length_nonnegative: forall l: list 'a. length l >= 0
lemma Length_nil: forall l: list 'a. length l = 0 <-> l = Nil
end
(** {2 Membership in a list} *)
module Mem
use List
predicate mem (x: 'a) (l: list 'a) = match l with
| Nil -> false
| Cons y r -> x = y \/ mem x r
end
end
(** {2 Quantifiers on lists} *)
module Quant
use List
use Mem
let rec function for_all (p: 'a -> bool) (l:list 'a) : bool
ensures { result <-> forall x. mem x l -> p x }
=
match l with
| Nil -> true
| Cons x r -> p x && for_all p r
end
let rec function for_some (p: 'a -> bool) (l:list 'a) : bool
ensures { result <-> exists x. mem x l /\ p x }
=
match l with
| Nil -> false
| Cons x r -> p x || for_some p r
end
let function mem (eq:'a -> 'a -> bool) (x:'a) (l:list 'a) : bool
ensures { result <-> exists y. mem y l /\ eq x y }
=
for_some (eq x) l
end
module Elements
use set.Fset
use List
use Mem
function elements (l: list 'a) : fset 'a =
match l with
| Nil -> empty
| Cons x r -> add x (elements r)
end
lemma elements_mem:
forall x: 'a, l: list 'a. mem x l <-> Fset.mem x (elements l)
end
(** {2 Nth element of a list} *)
module Nth
use List
use option.Option
use int.Int
let rec function nth (n: int) (l: list 'a) : option 'a =
match l with
| Nil -> None
| Cons x r -> if n = 0 then Some x else nth (n - 1) r
end
end
module NthNoOpt
use List
use int.Int
function nth (n: int) (l: list 'a) : 'a
axiom nth_cons_0: forall x:'a, r:list 'a. nth 0 (Cons x r) = x
axiom nth_cons_n: forall x:'a, r:list 'a, n:int.
n > 0 -> nth n (Cons x r) = nth (n-1) r
end
module NthLength
use int.Int
use option.Option
use List
use export Nth
use export Length
lemma nth_none_1:
forall l: list 'a, i: int. i < 0 -> nth i l = None
lemma nth_none_2:
forall l: list 'a, i: int. i >= length l -> nth i l = None
lemma nth_none_3:
forall l: list 'a, i: int. nth i l = None -> i < 0 \/ i >= length l
end
(** {2 Head and tail} *)
module HdTl
use List
use option.Option
let function hd (l: list 'a) : option 'a = match l with
| Nil -> None
| Cons h _ -> Some h
end
let function tl (l: list 'a) : option (list 'a) = match l with
| Nil -> None
| Cons _ t -> Some t
end
end
module HdTlNoOpt
use List
function hd (l: list 'a) : 'a
axiom hd_cons: forall x:'a, r:list 'a. hd (Cons x r) = x
function tl (l: list 'a) : list 'a
axiom tl_cons: forall x:'a, r:list 'a. tl (Cons x r) = r
end
(** {2 Relation between head, tail, and nth} *)
module NthHdTl
use int.Int
use option.Option
use List
use Nth
use HdTl
lemma Nth_tl:
forall l1 l2: list 'a. tl l1 = Some l2 ->
forall i: int. i <> -1 -> nth i l2 = nth (i+1) l1
lemma Nth0_head:
forall l: list 'a. nth 0 l = hd l
end
(** {2 Appending two lists} *)
module Append
use List
let rec function (++) (l1 l2: list 'a) : list 'a =
match l1 with
| Nil -> l2
| Cons x1 r1 -> Cons x1 (r1 ++ l2)
end
lemma Append_assoc:
forall l1 [@induction] l2 l3: list 'a.
l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3
lemma Append_l_nil:
forall l: list 'a. l ++ Nil = l
use Length
use int.Int
lemma Append_length:
forall l1 [@induction] l2: list 'a. length (l1 ++ l2) = length l1 + length l2
use Mem
lemma mem_append:
forall x: 'a, l1 [@induction] l2: list 'a.
mem x (l1 ++ l2) <-> mem x l1 \/ mem x l2
lemma mem_decomp:
forall x: 'a, l: list 'a.
mem x l -> exists l1 l2: list 'a. l = l1 ++ Cons x l2
end
module NthLengthAppend
use int.Int
use List
use export NthLength
use export Append
lemma nth_append_1:
forall l1 l2: list 'a, i: int.
i < length l1 -> nth i (l1 ++ l2) = nth i l1
lemma nth_append_2:
forall l1 [@induction] l2: list 'a, i: int.
length l1 <= i -> nth i (l1 ++ l2) = nth (i - length l1) l2
end
(** {2 Reversing a list} *)
module Reverse
use List
use Append
let rec function reverse (l: list 'a) : list 'a =
match l with
| Nil -> Nil
| Cons x r -> reverse r ++ Cons x Nil
end
lemma reverse_append:
forall l1 l2: list 'a, x: 'a.
(reverse (Cons x l1)) ++ l2 = (reverse l1) ++ (Cons x l2)
lemma reverse_cons:
forall l: list 'a, x: 'a.
reverse (Cons x l) = reverse l ++ Cons x Nil
lemma cons_reverse:
forall l: list 'a, x: 'a.
Cons x (reverse l) = reverse (l ++ Cons x Nil)
lemma reverse_reverse:
forall l: list 'a. reverse (reverse l) = l
use Mem
lemma reverse_mem:
forall l: list 'a, x: 'a. mem x l <-> mem x (reverse l)
use Length
lemma Reverse_length:
forall l: list 'a. length (reverse l) = length l
end
(** {2 Reverse append} *)
module RevAppend
use List
let rec function rev_append (s t: list 'a) : list 'a =
match s with
| Cons x r -> rev_append r (Cons x t)
| Nil -> t
end
use Append
lemma rev_append_append_l:
forall r [@induction] s t: list 'a.
rev_append (r ++ s) t = rev_append s (rev_append r t)
use int.Int
use Length
lemma rev_append_length:
forall s [@induction] t: list 'a.
length (rev_append s t) = length s + length t
use Reverse
lemma rev_append_def:
forall r [@induction] s: list 'a. rev_append r s = reverse r ++ s
lemma rev_append_append_r:
forall r s t: list 'a.
rev_append r (s ++ t) = rev_append (rev_append s r) t
end
(** {2 Zip} *)
module Combine
use List
let rec function combine (x: list 'a) (y: list 'b) : list ('a, 'b)
= match x, y with
| Cons x0 x, Cons y0 y -> Cons (x0, y0) (combine x y)
| _ -> Nil
end
end
(** {2 Sorted lists for some order as parameter} *)
module Sorted
use List
type t
predicate le t t
clone relations.Transitive with
type t = t, predicate rel = le, axiom Trans
inductive sorted (l: list t) =
| Sorted_Nil:
sorted Nil
| Sorted_One:
forall x: t. sorted (Cons x Nil)
| Sorted_Two:
forall x y: t, l: list t.
le x y -> sorted (Cons y l) -> sorted (Cons x (Cons y l))
use Mem
lemma sorted_mem:
forall x: t, l: list t.
(forall y: t. mem y l -> le x y) /\ sorted l <-> sorted (Cons x l)
use Append
lemma sorted_append:
forall l1 [@induction] l2: list t.
(sorted l1 /\ sorted l2 /\ (forall x y: t. mem x l1 -> mem y l2 -> le x y))
<->
sorted (l1 ++ l2)
end
(** {2 Sorted lists of integers} *)
module SortedInt
use int.Int
clone export Sorted with type t = int, predicate le = (<=), goal Transitive.Trans
end
module RevSorted
type t
predicate le t t
clone relations.Transitive with
type t = t, predicate rel = le, axiom Trans
predicate ge (x y: t) = le y x
use List
clone Sorted as Incr with type t = t, predicate le = le, goal .
clone Sorted as Decr with type t = t, predicate le = ge, goal .
predicate compat (s t: list t) =
match s, t with
| Cons x _, Cons y _ -> le x y
| _, _ -> true
end
use RevAppend
lemma rev_append_sorted_incr:
forall s [@induction] t: list t.
Incr.sorted (rev_append s t) <->
Decr.sorted s /\ Incr.sorted t /\ compat s t
lemma rev_append_sorted_decr:
forall s [@induction] t: list t.
Decr.sorted (rev_append s t) <->
Incr.sorted s /\ Decr.sorted t /\ compat t s
end
(** {2 Number of occurrences in a list} *)
module NumOcc
use int.Int
use List
function num_occ (x: 'a) (l: list 'a) : int =
match l with
| Nil -> 0
| Cons y r -> (if x = y then 1 else 0) + num_occ x r
end
(** number of occurrences of `x` in `l` *)
lemma Num_Occ_NonNeg: forall x:'a, l: list 'a. num_occ x l >= 0
use Mem
lemma Mem_Num_Occ :
forall x: 'a, l: list 'a. mem x l <-> num_occ x l > 0
use Append
lemma Append_Num_Occ :
forall x: 'a, l1 [@induction] l2: list 'a.
num_occ x (l1 ++ l2) = num_occ x l1 + num_occ x l2
use Reverse
lemma reverse_num_occ :
forall x: 'a, l: list 'a.
num_occ x l = num_occ x (reverse l)
end
(** {2 Permutation of lists} *)
module Permut
use NumOcc
use List
predicate permut (l1: list 'a) (l2: list 'a) =
forall x: 'a. num_occ x l1 = num_occ x l2
lemma Permut_refl: forall l: list 'a. permut l l
lemma Permut_sym: forall l1 l2: list 'a. permut l1 l2 -> permut l2 l1
lemma Permut_trans:
forall l1 l2 l3: list 'a. permut l1 l2 -> permut l2 l3 -> permut l1 l3
lemma Permut_cons:
forall x: 'a, l1 l2: list 'a.
permut l1 l2 -> permut (Cons x l1) (Cons x l2)
lemma Permut_swap:
forall x y: 'a, l: list 'a. permut (Cons x (Cons y l)) (Cons y (Cons x l))
use Append
lemma Permut_cons_append:
forall x : 'a, l1 l2 : list 'a.
permut (Cons x l1 ++ l2) (l1 ++ Cons x l2)
lemma Permut_assoc:
forall l1 l2 l3: list 'a.
permut ((l1 ++ l2) ++ l3) (l1 ++ (l2 ++ l3))
lemma Permut_append:
forall l1 l2 k1 k2 : list 'a.
permut l1 k1 -> permut l2 k2 -> permut (l1 ++ l2) (k1 ++ k2)
lemma Permut_append_swap:
forall l1 l2 : list 'a.
permut (l1 ++ l2) (l2 ++ l1)
use Mem
lemma Permut_mem:
forall x: 'a, l1 l2: list 'a. permut l1 l2 -> mem x l1 -> mem x l2
use Length
lemma Permut_length:
forall l1 [@induction] l2: list 'a. permut l1 l2 -> length l1 = length l2
end
(** {2 List with pairwise distinct elements} *)
module Distinct
use List
use Mem
predicate distinct (l: list 'a) =
match l with
| Nil | Cons _ Nil -> true
| Cons x xs -> not (mem x xs) /\ distinct xs
end
use Append
lemma distinct_append:
forall l1 [@induction] l2: list 'a.
distinct l1 -> distinct l2 -> (forall x:'a. mem x l1 -> not (mem x l2)) ->
distinct (l1 ++ l2)
end
module Prefix
use List
use int.Int
let rec function prefix (n: int) (l: list 'a) : list 'a =
if n <= 0 then Nil else
match l with
| Nil -> Nil
| Cons x r -> Cons x (prefix (n-1) r)
end
end
module Sum
use List
use int.Int
let rec function sum (l: list int) : int =
match l with
| Nil -> 0
| Cons x r -> x + sum r
end
end
(*
(** {2 Induction on lists} *)
module Induction
use List
(* type elt *)
(* predicate p (list elt) *)
axiom Induction:
forall p: list 'a -> bool.
p (Nil: list 'a) ->
(forall x:'a. forall l:list 'a. p l -> p (Cons x l)) ->
forall l:list 'a. p l
end
*)
(** {2 Maps as lists of pairs} *)
module Map
use List
function map (f: 'a -> 'b) (l: list 'a) : list 'b =
match l with
| Nil -> Nil
| Cons x r -> Cons (f x) (map f r)
end
end
(** {2 Generic recursors on lists} *)
module FoldLeft
use List
function fold_left (f: 'b -> 'a -> 'b) (acc: 'b) (l: list 'a) : 'b =
match l with
| Nil -> acc
| Cons x r -> fold_left f (f acc x) r
end
use Append
lemma fold_left_append:
forall l1 [@induction] l2: list 'a, f: 'b -> 'a -> 'b, acc : 'b.
fold_left f acc (l1++l2) = fold_left f (fold_left f acc l1) l2
end
module FoldRight
use List
function fold_right (f: 'a -> 'b -> 'b) (l: list 'a) (acc: 'b) : 'b =
match l with
| Nil -> acc
| Cons x r -> f x (fold_right f r acc)
end
use Append
lemma fold_right_append:
forall l1 [@induction] l2: list 'a, f: 'a -> 'b -> 'b, acc : 'b.
fold_right f (l1++l2) acc = fold_right f l1 (fold_right f l2 acc)
end
(** {2 Importation of all list theories in one} *)
module ListRich
use export List
use export Length
use export Mem
use export Nth
use export HdTl
use export NthHdTl
use export Append
use export Reverse
use export RevAppend
use export NumOcc
use export Permut
end