Files
why3/lib/coq/set/SetAppInt.v
2025-06-04 11:10:16 +02:00

90 lines
2.0 KiB
Coq

(********************************************************************)
(* *)
(* The Why3 Verification Platform / The Why3 Development Team *)
(* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *)
(* *)
(* This software is distributed under the terms of the GNU Lesser *)
(* General Public License version 2.1, with the special exception *)
(* on linking described in file LICENSE. *)
(********************************************************************)
(* This file is generated by Why3's Coq-realize driver *)
(* Beware! Only edit allowed sections below *)
Require Import BuiltIn.
Require BuiltIn.
Require HighOrd.
Require int.Int.
Require set.Fset.
Require set.FsetInt.
Require set.SetApp.
(* Why3 goal *)
Definition set : Type.
Proof.
exact (Fset.fset Z).
Defined.
(* Why3 goal *)
Definition to_fset : set -> set.Fset.fset Numbers.BinNums.Z.
Proof.
exact (fun x => x).
Defined.
(* Why3 goal *)
Definition mk : set.Fset.fset Numbers.BinNums.Z -> set.
Proof.
exact (fun x => x).
Defined.
(* Why3 goal *)
Lemma mk'spec :
forall (s:set.Fset.fset Numbers.BinNums.Z), ((to_fset (mk s)) = s).
Proof.
trivial.
Qed.
(* Why3 goal *)
Definition choose : set -> Numbers.BinNums.Z.
Proof.
exact Fset.pick.
Defined.
(* Why3 goal *)
Lemma choose'spec :
forall (s:set), ~ set.Fset.is_empty (to_fset s) ->
set.Fset.mem (choose s) (to_fset s).
Proof.
apply Fset.pick_def.
Qed.
(* Why3 goal *)
Definition t : Type.
Proof.
exact unit.
Defined.
(* Why3 goal *)
Definition initial : t -> set.
Proof.
intro x.
exact Fset.empty.
Defined.
(* Why3 goal *)
Definition visited : t -> set.
Proof.
intro x.
exact Fset.empty.
Defined.
(* Why3 goal *)
Lemma t'invariant :
forall (self:t),
set.Fset.subset (to_fset (visited self)) (to_fset (initial self)).
Proof.
intros self.
unfold Fset.subset, to_fset, visited, initial.
auto.
Qed.