Files
why3/examples_in_progress/bigInt.mlw
2023-03-08 12:26:34 +00:00

616 lines
21 KiB
Plaintext

(** {1 A library for arbitrary-precision integer arithmetic} *)
module N
use map.Map
use mach.int.Int31
use mach.array.Array31
use ref.Ref
use int.Int
use int.Power
(** {2 data type for unbound integers and invariants} *)
constant base : int = 10000
(** a power of ten whose square fits on 31 bits *)
type t = { mutable digits: array int31 }
(** an unbounded integer is stored in an array of 31 bits integers,
with all values between 0 included and [base] excluded
index 0 is the lsb. the msb is never 0.
*)
predicate ok_array (a:array int31) =
(to_int a.length >= 1 -> to_int a[to_int a.length - 1] <> 0) /\
forall i:int. 0 <= i < to_int a.length ->
0 <= to_int a[i] < base
predicate ok (x:t) = ok_array x.digits
(** {2 value stored in an array} *)
(* [value_sub x n m] denotes the integer represented by
the digits x[n..m-1] with lsb at index n *)
function value_sub (x:map int int31) (n:int) (m:int) (l:int): int
(* =
if 0 <= n < l /\ n < m then
x.[n] + base * value_sub x (n+1) m l
else 0
*)
axiom value_sub_next:
forall x,n,m,l.
value_sub x n m l =
if 0 <= n < l /\ n < m then
to_int (Map.get x n) + base * value_sub x (n+1) m l
else 0
use map.MapEq
let rec lemma value_sub_frame (x y:map int int31) (n m l:int)
requires { MapEq.map_eq_sub x y n m }
variant { m - n }
ensures { value_sub x n m l = value_sub y n m l }
=
if n < m then value_sub_frame x y (n+1) m l else ()
let rec lemma value_sub_tail (x:map int int31) (n m l :int)
requires { 0 <= n <= m < l }
variant { m - n }
ensures {
value_sub x n (m+1) l =
value_sub x n m l + to_int (Map.get x m) * power base (m-n) }
= if n < m then value_sub_tail x (n+1) m l else ()
let rec lemma value_sub_tail_end (x:map int int31) (n m l :int)
requires { 0 <= n <= m /\ m >= l }
variant { m - n }
ensures { value_sub x n (m+1) l = value_sub x n m l }
= if n < m then value_sub_tail_end x (n+1) m l else ()
let rec lemma value_sub_shorten (x:map int int31) (n m l:int)
requires { 0 <= n <= m <= l }
variant { m - n }
ensures { value_sub x n m l = value_sub x n m m }
= if n < m then value_sub_shorten x (n+1) m l else ()
let rec lemma value_sub_leading_zeros (x:map int int31) (n m' m l:int)
requires { 0 <= n <= m' <= m <= l }
requires { forall i. m' <= i < m -> to_int (Map.get x i) = 0 }
variant { m - m' }
ensures { value_sub x n m l = value_sub x n m' l }
= if m' < m then value_sub_leading_zeros x n (m'+1) m l else ()
function value_array (x:array int31) : int =
value_sub x.elts 0 (to_int x.length) (to_int x.length)
function value (x:t) : int = value_array x.digits
(** {2 general lemmas} *)
(* moved to stdlib
lemma power_monotonic:
forall x y z. 0 <= x <= y -> power z x <= power z y
*)
lemma power_non_neg:
forall x y. x >= 0 /\ y >= 0 -> power x y >= 0
lemma value_zero:
forall x:array int31.
let l = to_int x.length in
l = 0 -> value_array x = 0
lemma value_sub_upper_bound:
forall x:map int int31, n l:int. 0 <= n <= l ->
(forall i:int. 0 <= i < n -> 0 <= to_int (Map.get x i) < base) ->
value_sub x 0 n l < power base n
lemma value_sub_lower_bound:
forall x:map int int31, n l:int. 0 <= n <= l ->
(forall i:int. 0 <= i < n -> 0 <= to_int (Map.get x i) < base) ->
0 <= value_sub x 0 n l
lemma value_sub_lower_bound_tight:
forall x:map int int31, n l:int. 0 < n <= l ->
(forall i:int. 0 <= i < n-1 -> 0 <= to_int (Map.get x i) < base) ->
0 < to_int (Map.get x (n-1)) < base ->
power base (n-1) <= value_sub x 0 n l
lemma value_bounds_array:
forall x:array int31. ok_array x ->
let l = to_int x.length in
l > 0 -> power base (l-1) <= value_array x < power base l
(** {2 conversion from a small integer} *)
let from_small_int (n:int31) : t
requires { 0 <= to_int n < base }
ensures { ok result }
ensures { value result = to_int n }
= let zero = of_int 0 in
let a =
if n = zero then
Array31.make zero zero
else
Array31.make (of_int 1) n
in
{ digits = a }
(** {2 Comparisons} *)
exception Break
(* Comparisons *)
let compare_array (x y:array int31) : int31
requires { ok_array x /\ ok_array y }
ensures { -1 <= to_int result <= 1 }
ensures { to_int result = -1 -> value_array x < value_array y }
ensures { to_int result = 0 -> value_array x = value_array y }
ensures { to_int result = 1 -> value_array x > value_array y }
= let zero = of_int 0 in
let one = of_int 1 in
let minus_one = of_int (-1) in
let l1 = x.length in
let l2 = y.length in
if Int31.(<) l1 l2 then minus_one else
if Int31.(>) l1 l2 then one else
let i = ref l1 in
let res = ref zero in
let ghost acc = ref 0 in
try
while Int31.(>) !i zero do
invariant { to_int !res = 0 }
(* needed to be sure it is zero at normal exit ! *)
invariant { 0 <= to_int !i <= to_int l1 }
invariant {
value_sub x.elts 0 (to_int !i) (to_int l1) = value_array x - !acc
}
invariant {
value_sub y.elts 0 (to_int !i) (to_int l1) = value_array y - !acc
}
variant { to_int !i }
assert { value_array x - !acc =
value_sub x.elts 0 (to_int !i - 1) (to_int l1) +
power base (to_int !i - 1) * (to_int x[to_int !i - 1])
};
assert { value_array y - !acc =
value_sub y.elts 0 (to_int !i - 1) (to_int l1) +
power base (to_int !i - 1) * (to_int y[to_int !i - 1])
};
i := Int31.(-) !i one;
if Int31.(<) x[!i] y[!i] then
begin
assert { value_sub y.elts 0 (to_int !i) (to_int l1) >= 0 };
assert { value_sub x.elts 0 (to_int !i) (to_int l1) <
power base (to_int !i)
};
assert { value_array y - !acc >=
power base (to_int !i) * (to_int y[to_int !i])
};
assert { to_int y[to_int !i] >= to_int x[to_int !i] + 1 };
assert { power base (to_int !i) * (to_int y[to_int !i]) >=
power base (to_int !i) * (to_int x[to_int !i] + 1) };
assert { power base (to_int !i) * (to_int y[to_int !i]) >=
power base (to_int !i) * (to_int x[to_int !i])
+ power base (to_int !i) };
res := minus_one;
raise Break;
end;
if Int31.(>) x[!i] y[!i] then
begin
assert { value_sub x.elts 0 (to_int !i) (to_int l1) >= 0 };
assert { value_sub y.elts 0 (to_int !i) (to_int l1) <
power base (to_int !i)
};
assert { value_array x - !acc >=
power base (to_int !i) * (to_int x[to_int !i])
};
assert { to_int x[to_int !i] >= to_int y[to_int !i] + 1 };
assert { power base (to_int !i) * (to_int x[to_int !i]) >=
power base (to_int !i) * (to_int y[to_int !i] + 1) };
assert { power base (to_int !i) * (to_int x[to_int !i]) >=
power base (to_int !i) * (to_int y[to_int !i])
+ power base (to_int !i) };
res := one;
raise Break
end;
acc := !acc + power base (to_int !i) * to_int x[!i];
done;
raise Break
with Break -> !res
end
let eq (x y:t) : bool
requires { ok x /\ ok y }
ensures { if result then value x = value y else value x <> value y }
= compare_array x.digits y.digits = of_int 0
(** {2 arithmetic operations} *)
exception TooManyDigits
let add_array (x y:array int31) : array int31
requires { ok_array x /\ ok_array y }
requires { to_int x.length <= to_int y.length }
ensures { ok_array result }
ensures { value_array result = value_array x + value_array y }
raises { TooManyDigits -> true }
=
let zero = of_int 0 in
let one = of_int 1 in
let minus_one = of_int (-1) in
let base31 = of_int 10000 in
assert { to_int base31 = base };
let l = x.length in
let h = y.length in
if Int31.(>=) h (of_int 0x3FFFFFFF) then raise TooManyDigits;
let arr = Array31.make (Int31.(+) h one) zero in
let carry = ref zero in
let i = ref zero in
let non_null_idx = ref minus_one in
while Int31.(<) !i l do
invariant { 0 <= to_int !i <= to_int l }
invariant { 0 <= to_int !carry <= 1 }
invariant {
forall j. 0 <= j < to_int !i -> 0 <= to_int arr[j] < base }
invariant { -1 <= to_int !non_null_idx < to_int !i }
invariant {
to_int !non_null_idx >= 0 -> to_int arr[to_int !non_null_idx] <> 0 }
invariant {
forall j. to_int !non_null_idx < j < to_int !i -> to_int arr[j] = 0 }
invariant {
value_sub arr.elts 0 (to_int !i) (to_int h + 1)
+ (to_int !carry) * power base (to_int !i) =
value_sub x.elts 0 (to_int !i) (to_int l)
+ value_sub y.elts 0 (to_int !i) (to_int h) }
variant { to_int l - to_int !i }
label L in
let sum = Int31.(+) (Int31.(+) x[!i] y[!i]) !carry in
if Int31.(>=) sum base31
then begin arr[!i] <- Int31.(-) sum base31; carry := one end
else begin arr[!i] <- sum; carry := zero end;
if arr[!i] <> zero then non_null_idx := !i;
assert {
MapEq.map_eq_sub arr.elts (arr at L).elts 0 (to_int !i) };
assert { value_sub arr.elts 0 (to_int !i) (to_int h + 1) =
value_sub (arr at L).elts 0 (to_int !i) (to_int h + 1) };
i := Int31.(+) !i one;
done;
while Int31.(<) !i h do
invariant { to_int l <= to_int !i <= to_int h }
invariant { 0 <= to_int !carry <= 1 }
invariant {
forall j. 0 <= j < to_int !i -> 0 <= to_int arr[j] < base }
invariant { -1 <= to_int !non_null_idx < to_int !i }
invariant {
to_int !non_null_idx >= 0 -> to_int arr[to_int !non_null_idx] <> 0 }
invariant {
forall j. to_int !non_null_idx < j < to_int !i -> to_int arr[j] = 0 }
invariant {
value_sub arr.elts 0 (to_int !i) (to_int h + 1)
+ (to_int !carry) * power base (to_int !i) =
value_sub x.elts 0 (to_int l) (to_int l)
+ value_sub y.elts 0 (to_int !i) (to_int h) }
variant { to_int h - to_int !i }
label L in
let sum = Int31.(+) y[!i] !carry in
if Int31.(>=) sum base31
then begin arr[!i] <- Int31.(-) sum base31; carry := one end
else begin arr[!i] <- sum; carry := zero end;
if arr[!i] <> zero then non_null_idx := !i;
assert {
MapEq.map_eq_sub arr.elts (arr at L).elts 0 (to_int !i) };
assert { value_sub arr.elts 0 (to_int !i) (to_int h + 1) =
value_sub (arr at L).elts 0 (to_int !i) (to_int h + 1) };
i := Int31.(+) !i one;
done;
label L in
arr[!i] <- !carry;
assert {
MapEq.map_eq_sub arr.elts (arr at L).elts 0 (to_int !i) };
assert { value_sub arr.elts 0 (to_int !i) (to_int h + 1) =
value_sub (arr at L).elts 0 (to_int !i) (to_int h + 1) };
assert { value_array arr = value_array x + value_array y };
begin
ensures { -1 <= to_int !non_null_idx <= to_int !i }
ensures { to_int !non_null_idx >= 0 -> to_int arr[to_int !non_null_idx] <> 0 }
ensures {
forall j. to_int !non_null_idx < j <= to_int !i -> to_int arr[j] = 0 }
(if arr[!i] <> zero then non_null_idx := !i)
end;
let len = Int31.(+) !non_null_idx one in
assert { value_sub arr.elts 0 (to_int !i + 1) (to_int h + 1) =
value_sub arr.elts 0 (to_int len) (to_int h + 1) } ;
assert { value_sub arr.elts 0 (to_int !i + 1) (to_int h + 1) =
value_sub arr.elts 0 (to_int len) (to_int len) } ;
let arr' = Array31.make len zero in
Array31.blit arr zero arr' zero len;
assert {
MapEq.map_eq_sub arr.elts arr'.elts 0 (to_int len) };
assert { value_sub arr.elts 0 (to_int len) (to_int len) =
value_sub arr'.elts 0 (to_int len) (to_int len) } ;
assert { to_int arr'.length >= 1 ->
to_int arr'[to_int arr'.length - 1] <> 0 };
assert { forall j. 0 <= j < to_int arr'.length ->
0 <= to_int arr'[j] < base };
arr'
let add (x y:t) : t
requires { ok x /\ ok y }
ensures { ok result }
ensures { value result = value x + value y }
raises { TooManyDigits -> true }
= let l1 = x.digits.length in
let l2 = y.digits.length in
let res =
if Int31.(<=) l1 l2 then
add_array x.digits y.digits
else add_array y.digits x.digits
in
{ digits = res }
(* Multiplication: school book algorithm *)
(*
let rec mul_array (x y:array int31) : array int31
requires { ok_array x /\ ok_array y }
ensures { ok_array result }
ensures { value_array result = value_array x * value_array y }
raises { TooManyDigits -> true }
= let zero = of_int 0 in
let one = of_int 1 in
let two = of_int 2 in
let base31 = of_int 10000 in
assert { to_int base31 = base };
let l1 = x.digits.length in
let l2 = y.digits.length in
TODO
*)
(* Multiplication: Karatsuba algorithm
let rec mul_array (x y:array int31) : array int31
requires { ok_array x /\ ok_array y }
ensures { ok_array result }
ensures { value_array result = value_array x * value_array y }
raises { TooManyDigits -> true }
= let zero = of_int 0 in
let one = of_int 1 in
let two = of_int 2 in
let base31 = of_int 10000 in
assert { to_int base31 = base };
let l1 = x.digits.length in
let l2 = y.digits.length in
if Int31.(<=) l1 (of_int 1) && Int31.(<=) l1 (of_int 1) then
(* two small nums *)
let n = x.digits.[0] * y.digits.[0] in
let h = Int31.(/) n base31 in
let l = Int31.(-) n (Int31.(*) h base31) in
if Int31.eq h zero then
if Int31.eq l zero then
let arr = Array31.make zero zero in
{ digits = arr }
else
let arr = Array31.make one l in
{ digits = arr }
else
let arr = Array31.make two l in
arr.(1) <- h;
{ digits = arr }
else
let m = if Int31.(<=) l1 l2 then l2 else l1 in
let m2 = Int31.(/) m two in
let m' = Int31.(-) m m2 in
let low1 = Array31.make m2 zero in
Array31.blit x zero low1 zero m2; (* wrong if l1 < m2 ! *)
let low2 = Array31.make m2 zero in
Array31.blit y zero low2 zero m2; (* wrong if l2 < m2 ! *)
let high1 = Array31.make m' zero in
Array31.blit x m2 high1 zero m'; (* wrong if l1 < m ! *)
let high2 = Array31.make m' zero in
Array31.blit y m2 high2 zero m'; (* wrong if l2 < m ! *)
assert { value_array x = value_array low1 +
power base m2 * value_array high1 };
assert { value_array y = value_array low2 +
power base m2 * value_array high2 };
let z0 = mul_array low1 low2 in
let z1 = mul_array (add_array low1 high1) (add_array low2 high2)
let z2 = mul_array high1 high2 in
(*
return (z2*10^(2*m2))+((z1-z2-z0)*10^(m2))+(z0)
-> we need subtraction !
*)
let mul (x y:t) : t
requires { ok x /\ ok y }
ensures { ok result }
ensures { value result = value x * value y }
raises { TooManyDigits -> true }
= let res = mul_array x.digits y.digits in
{ digits = res }
*)
end
module Z
use map.Map
use mach.int.Int31
use mach.array.Array31
use ref.Ref
use int.Int
use int.Power
let constant base : int = 32768
let constant max_digit : int = 16384
let constant min_digit : int = -16384
type t = { mutable digits: array int31 }
predicate ok_array (a:array int31) =
forall i:int. 0 <= i < to_int a.length ->
min_digit <= to_int a[i] < max_digit
predicate ok (x:t) = ok_array x.digits
(* [value_sub x n m] denotes the integer represented by
the digits x[n..m-1] with lsb at index n *)
function value_sub (x:map int int31) (n:int) (m:int) (l:int): int
(* =
if 0 <= n < l /\ n < m then
x.[n] + base * value_sub x (n+1) m l
else 0
*)
axiom value_sub_next:
forall x,n,m,l.
value_sub x n m l =
if 0 <= n < l /\ n < m then
to_int (Map.get x n) + base * value_sub x (n+1) m l
else 0
use map.MapEq
let rec lemma value_sub_frame (x y:map int int31) (n m l:int)
requires { MapEq.map_eq_sub x y n m }
variant { m - n }
ensures { value_sub x n m l = value_sub y n m l }
=
if n < m then value_sub_frame x y (n+1) m l else ()
let rec lemma value_sub_tail (x:map int int31) (n m l :int)
requires { 0 <= n <= m < l }
variant { m - n }
ensures {
value_sub x n (m+1) l =
value_sub x n m l + to_int (Map.get x m) * power base (m-n) }
= if n < m then value_sub_tail x (n+1) m l else ()
let rec lemma value_sub_tail_end (x:map int int31) (n m l :int)
requires { 0 <= n <= m /\ m >= l }
variant { m - n }
ensures { value_sub x n (m+1) l = value_sub x n m l }
= if n < m then value_sub_tail_end x (n+1) m l else ()
function value_array (x:array int31) : int =
value_sub x.elts 0 (to_int x.length) (to_int x.length)
function value (x:t) : int = value_array x.digits
let from_small_int (n:int31) : t
requires { min_digit <= to_int n < max_digit }
ensures { ok result }
ensures { value result = to_int n }
=
let a = Array31.make (of_int 1) n in
{ digits = a }
exception TooManyDigits
let add_array (x y:array int31) : array int31
requires { ok_array x /\ ok_array y }
requires { to_int x.length <= to_int y.length }
ensures { ok_array result }
ensures { value_array result = value_array x + value_array y }
raises { TooManyDigits -> true }
=
let zero = of_int 0 in
let one = of_int 1 in
let minusone = of_int (-1) in
let base31 = of_int base in
let min_digit31 = of_int min_digit in
let max_digit31 = of_int max_digit in
let l = x.length in
let h = y.length in
if Int31.(>=) h (of_int Int31.max_int31) then raise TooManyDigits;
let arr = Array31.make (Int31.(+) h one) zero in
let carry = ref zero in
let i = ref zero in
while Int31.(<) !i l do
invariant { 0 <= to_int !i <= to_int l }
invariant { -1 <= to_int !carry <= 1 }
invariant {
forall j. 0 <= j < to_int !i -> min_digit <= to_int arr[j] < max_digit }
invariant {
value_sub arr.elts 0 (to_int !i) (to_int h + 1)
+ (to_int !carry) * power base (to_int !i) =
value_sub x.elts 0 (to_int !i) (to_int l)
+ value_sub y.elts 0 (to_int !i) (to_int h) }
variant { to_int l - to_int !i }
label L in
let sum = Int31.(+) (Int31.(+) x[!i] y[!i]) !carry in
if Int31.(>=) sum max_digit31
then begin arr[!i] <- Int31.(-) sum base31; carry := one end
else
if Int31.(<) sum min_digit31
then begin arr[!i] <- Int31.(+) sum base31; carry := minusone end
else begin arr[!i] <- sum; carry := zero end;
assert {
MapEq.map_eq_sub arr.elts (arr at L).elts 0 (to_int !i) };
assert { value_sub arr.elts 0 (to_int !i) (to_int h + 1) =
value_sub (arr at L).elts 0 (to_int !i) (to_int h + 1) };
i := Int31.(+) !i one;
done;
while Int31.(<) !i h do
invariant { to_int l <= to_int !i <= to_int h }
invariant { -1 <= to_int !carry <= 1 }
invariant { forall j. 0 <= j < to_int !i ->
min_digit <= to_int arr[j] < max_digit }
invariant {
value_sub arr.elts 0 (to_int !i) (to_int h + 1)
+ (to_int !carry) * power base (to_int !i) =
value_sub x.elts 0 (to_int l) (to_int l)
+ value_sub y.elts 0 (to_int !i) (to_int h) }
variant { to_int h - to_int !i }
label L in
let sum = Int31.(+) y[!i] !carry in
if Int31.(>=) sum max_digit31
then begin arr[!i] <- Int31.(-) sum base31; carry := one end
else
if Int31.(<) sum min_digit31
then begin arr[!i] <- Int31.(+) sum base31; carry := minusone end
else begin arr[!i] <- sum; carry := zero end;
assert {
MapEq.map_eq_sub arr.elts (arr at L).elts 0 (to_int !i) };
assert { value_sub arr.elts 0 (to_int !i) (to_int h + 1) =
value_sub (arr at L).elts 0 (to_int !i) (to_int h + 1) };
i := Int31.(+) !i one;
done;
label L in
arr[!i] <- !carry;
assert {
MapEq.map_eq_sub arr.elts (arr at L).elts 0 (to_int !i) };
assert { value_sub arr.elts 0 (to_int !i) (to_int h + 1) =
value_sub (arr at L).elts 0 (to_int !i) (to_int h + 1) };
arr
let add (x y:t) : t
requires { ok x /\ ok y }
ensures { ok result }
ensures { value result = value x + value y }
raises { TooManyDigits -> true }
= let l1 = x.digits.length in
let l2 = y.digits.length in
let res =
if Int31.(<=) l1 l2 then
add_array x.digits y.digits
else add_array y.digits x.digits
in
{ digits = res }
end