Files
why3/examples/verifythis_2018_array_based_queuing_lock_2.mlw
Raphael Rieu-Helft 00256ea349 Update ABQL session
2019-06-06 16:39:35 +02:00

479 lines
19 KiB
Plaintext

(**
{1 VerifyThis @ ETAPS 2018 competition
Challenge 3: Array-Based Queuing Lock}
Author: Raphaël Rieu-Helft (LRI, Université Paris Sud)
*)
module ABQL
use array.Array
use int.Int
use ref.Refint
use int.EuclideanDivision
use option.Option
val constant n : int
axiom N_val: 2 <= n
val constant k : int
axiom K_val: 2 <= k
type tick =
{ b : int; (* ticket number *)
ghost v : int; (* unbounded ticket number *) }
invariant { 0 <= v /\ 0 <= b < k*n /\ b = mod v (k*n) }
by { b = 0; v = 0 }
let fetch_and_add (r:ref tick)
ensures { !r.v = old !r.v + 1 }
ensures { result = old !r }
=
let res = !r in
assert { mod (res.b + 1) (k*n) = mod (res.v + 1) (k*n)
by let a = div res.v (k*n) in
res.v = (k*n) * a + mod res.v (k*n)
so mod res.v (k*n) = res.b
so mod (res.v+1) (k*n) = mod ((k*n) * a + (res.b + 1)) (k*n)
= mod (res.b+1) (k*n) };
r := { v = res.v + 1; b = mod (res.b + 1) (k*n) };
res
predicate lt (tick1 tick2: tick) = tick1.v < tick2.v
use import seq.Seq as S
use seq.Mem
use seq.FreeMonoid
predicate sorted (s: seq tick) =
forall i j. 0 <= i < j < length s -> lt s[i] s[j]
predicate consecutive (l: seq tick) =
forall i. 0 < i < length l -> l[i].v = l[i-1].v + 1
(*
| Consecutive_Nil : consecutive Nil
| Consecutive_One : forall t. consecutive (Cons t Nil)
| Consecutive_Two : forall t1 t2 l.
t2.v = t1.v + 1 -> consecutive (Cons t2 l)
-> consecutive (Cons t1 (Cons t2 l))
*)
function last (l: seq tick) : option tick =
if length l = 0 then None else Some l[length l - 1]
(*
= match l with
| Nil -> None
| Cons x Nil -> Some x
| Cons _ l -> last l
end
*)
let lemma last_push (l: seq tick) (x:tick)
ensures { last (l ++ (cons x empty)) = Some x }
= ()
let lemma consecutive_last_push (l: seq tick) (x:tick)
requires { consecutive l }
requires { match last l with
| None -> true
| Some y -> x.v = y.v + 1 end }
ensures { consecutive (l ++ (cons x empty)) }
= ()
function hd (l: seq tick) : option tick =
if length l = 0 then None else Some l[0]
lemma hd_push:
forall l,x:tick. hd l = None \/ hd (l ++ (cons x empty)) = hd l
let rec lemma consecutive_implies_sorted (l: seq tick) (i j: int)
requires { consecutive l }
requires { 0 <= i < j < length l }
ensures { lt l[i] l[j] }
variant { j - i }
= if i+1 < j then consecutive_implies_sorted l (i+1) j
(*
we associate a program counter to each thread
I: idle
function acquire
A1: var my_ticket = fetch_and_add (next,1)
A2: while not pass[my_ticket] do () done;
A3: return my_ticket
W: working (with lock)
function release(my_ticket)
R1: pass[my_ticket] = false
R2: pass[my_ticket+1 mod N] = true
*)
type pc = A1 | A2 | A3 | R1 | R2 | I | W
predicate has_ticket (pc:pc) =
match pc with
| A1 | I -> false
| _ -> true
end
predicate has_lock (pc:pc) =
match pc with
| A3 | W | R1 | R2 -> true
| _ -> false
end
type nondet_source
type rng = abstract { mutable source : nondet_source }
val random : rng
val scheduler () : int
ensures { 0 <= result < n }
writes { random }
use array.NumOfEq
use queue.Queue
use array.Array
let lemma numof_equiv (a1 a2: array 'a) (v:'a) (l u: int)
requires { forall i. l <= i < u -> a1[i]=v <-> a2[i]=v }
ensures { numof a1 v l u = numof a2 v l u }
= ()
let lemma numof_add (a: array 'a) (v:'a) (l u: int) (i:int)
requires { l <= i < u }
requires { a[i] <> v }
ensures { numof a[i <- v] v l u = numof a v l u + 1 }
= assert { numof a[i<-v] v l i = numof a v l i };
assert { numof a[i<-v] v i (i+1) = 1 + numof a v i (i+1) };
assert { numof a[i<-v] v (i+1) u = numof a v (i+1) u }
lemma mod_diff:
forall a b c:int. c > 0 -> mod a c = mod b c -> mod (a-b) c = 0
by a = c * (div a c) + mod a c
so b = c * (div b c) + mod b c
so a - b = c * (div a c - div b c) + 0
so mod (a-b) c = mod 0 c = 0
let main () : unit
diverges
=
let pass = Array.make (k*n) false in
pass[0] <- true;
let next = ref { v = 0; b = 0 } in
let pcs = Array.make n I in
let memo : array (option tick) = Array.make n None in
(* value of my_ticket if set *)
let owners : array (option int) = Array.make (k*n) None in
(* who owns which ticket *)
let ghost lock_holder : ref int = ref (-1) in
let ghost waiting_list = Queue.create () in
let ghost active_tick = ref None in
while true do
invariant { [@expl:safety]
forall th. 0 <= th < n -> th <> !lock_holder ->
not has_lock (pcs[th]) }
invariant { -1 <= !lock_holder < n }
invariant { forall b. 0 <= b < k*n ->
match owners[b] with
| None -> true
| Some th -> 0 <= th < n
/\ match memo[th] with
| None -> false
| Some tick -> tick.b = b end
end }
invariant { forall tick. pass[tick.b] ->
match owners[tick.b] with
| None -> !lock_holder = -1
| Some th -> !lock_holder = -1 \/ !lock_holder = th end }
invariant { 0 <= !lock_holder < n ->
match pcs[!lock_holder] with
| A3 | W | R1 ->
match memo[!lock_holder] with
| None -> false
| Some tick -> pass[tick.b] end
| R2 -> forall b. 0 <= b < k * n -> not pass[b]
| _ -> false end }
invariant { forall b1 b2. 0 <= b1 < k*n -> 0 <= b2 < k*n ->
pass[b1] = true /\ pass[b2] = true ->
b1 = b2 }
invariant { 0 <= !lock_holder < n ->
has_lock (pcs[!lock_holder]) /\
match memo[!lock_holder] with
| None -> false
| Some tick -> !active_tick = Some tick end }
invariant { forall th. 0 <= th < n ->
match memo[th] with
| Some tick -> owners[tick.b] = Some th
| None -> true end }
invariant { forall th. 0 <= th < n ->
(memo[th] <> None <->
has_ticket (pcs[th])) }
invariant { forall tick. mem tick waiting_list ->
match owners[tick.b] with
| None -> false
| Some th -> pcs[th] = A2
/\ memo[th] = Some tick end }
invariant { forall th. 0 <= th < n ->
match memo[th] with
| Some tick -> mem tick waiting_list
\/ !active_tick = Some tick
| None -> true end }
invariant { forall th. 0 <= th < n -> not has_lock pcs[th] ->
match memo[th] with
| None -> pcs[th] <> A2
| Some tick -> mem tick waiting_list end }
invariant { consecutive waiting_list } (* also implies unicity *)
invariant { S.length waiting_list = numof pcs A2 0 n }
invariant { forall tick. mem tick waiting_list ->
!next.v - S.length waiting_list <= tick.v < !next.v }
invariant { match last waiting_list with
| None -> true
| Some t -> t.v = !next.v - 1 end}
invariant { match hd waiting_list with
| None -> true
| Some t -> t.v = !next.v - S.length waiting_list end }
invariant { match !active_tick with
| None -> !lock_holder = -1
| Some tick ->
(match hd waiting_list with
| None -> !next.v = tick.v + 1
| Some t -> t.v = tick.v + 1 end)
/\ tick.v = !next.v - S.length waiting_list - 1
/\ 0 <= !lock_holder < n
/\ memo[!lock_holder] = Some tick end }
invariant { 0 <= S.length waiting_list <= n }
(* invariant { length waiting_list = n \/ owners[!next.b] = None } *)
invariant { [@expl:liveness]
!lock_holder = - 1 ->
(* someone is in the critical section... *)
((if S.length waiting_list = 0
then false
else let tick = S.get waiting_list 0 in
pass[tick.b] = true)
(* ...or someone has a ticket to the critical section... *)
\/ (exists th. 0 <= th < n /\ memo[th] = None
/\ pass[!next.b] = true)
/\ waiting_list = empty)
(* ...or someone can take one *) }
let th = scheduler () in (*choose a thread*)
(* make it progress by 1 step *)
label Step in
match pcs[th] with
| I ->
pcs[th] <- A1
| A1 ->
let tick = fetch_and_add next in
assert { is_none owners[tick.b]
by S.length waiting_list <= n < 2*n - 1 <= k*n - 1
so ((forall tick'. mem tick' waiting_list
-> (tick'.b <> tick.b)
by 0 < tick.v - tick'.v < k*n
so mod (tick.v - tick'.v) (k*n) <> 0
so mod tick.v (k*n) <> mod tick'.v (k*n)))
so forall th'. owners[tick.b] = Some th' -> false
by match memo[th'] with
| None -> false
| Some tick' -> false
by tick'.b = tick.b
so not mem tick' waiting_list
so !active_tick = Some tick'
so 0 < tick.v - tick'.v < k*n
so mod (tick.v - tick'.v) (k*n) <> 0
so mod tick.v (k*n) <> mod tick'.v (k*n)
end };
assert { forall th. 0 <= th < n -> memo[th] <> Some tick };
owners[tick.b] <- Some th;
memo[th] <- Some tick;
pcs[th] <- A2;
assert { numof pcs A2 0 n = numof pcs A2 0 n at Step + 1 };
assert { !lock_holder = !lock_holder at Step <> th };
assert { forall tick'. mem tick' waiting_list ->
tick'.b <> tick.b /\ owners[tick'.b] <> Some th };
assert { forall tick'. mem tick' waiting_list ->
match owners[tick'.b] with
| None -> false
| Some th' ->
pcs[th'] = A2
/\ memo[th'] = Some tick'
by th <> th'
so pcs[th'] = pcs[th'] at Step
so memo[th'] = memo[th'] at Step end };
push tick waiting_list;
assert { consecutive waiting_list
by waiting_list
= waiting_list at Step ++ (cons tick empty) };
assert { match !active_tick with
| None -> !lock_holder = -1
| Some tick' ->
(match hd waiting_list with
| None -> false
| Some t ->
t.v = tick'.v + 1
by match hd waiting_list at Step with
| None -> t = tick
so
tick.v = !next.v at Step = tick'.v + 1
| Some t -> t.v = tick'.v + 1
/\ hd waiting_list = Some t end
end)
end };
assert { !lock_holder = -1 ->
if S.length waiting_list = 0 then
false
else
let t1 = S.get waiting_list 0 in
pass[t1.b]
by
if S.length (waiting_list at Step) = 0
then pass[t1.b]
by (t1 = tick /\
pass[tick.b] by pass[!next.b at Step])
else let t = S.get (waiting_list at Step) 0 in pass[t1.b] by t=t1 so pass[t.b]
};
assert { match hd waiting_list with
| None -> true
| Some t ->
if t = tick
then t.v = !next.v - S.length waiting_list
by waiting_list at Step = empty
so S.length waiting_list = 1
else t.v = !next.v - S.length waiting_list
by hd waiting_list at Step = Some t
so t.v = !next.v - S.length waiting_list at Step
end };
| A2 ->
match memo[th] with
| None -> absurd
| Some tick ->
if pass[tick.b]
then begin
active_tick := Some tick;
assert { !lock_holder = - 1 };
lock_holder := th;
pcs[th] <- A3; (* progress only with lock *)
let ghost tick' = safe_pop waiting_list in
assert { pass[tick'.b] };
assert { [@expl:fairness] tick=tick'
by tick.b = tick'.b
so mem tick waiting_list at Step
so mem tick' waiting_list at Step };
assert { not mem tick waiting_list
by waiting_list at Step
= cons tick waiting_list
so consecutive waiting_list at Step
so consecutive waiting_list
so if S.length waiting_list = 0
then not mem tick waiting_list
else let x = S.get waiting_list 0 in
let l = waiting_list[1 .. ] in
not mem tick waiting_list
by tick.v < x.v
so (forall t. mem t l -> lt x t
by forall i. 0 <= i < S.length l ->
t = S.([]) l i ->
(lt x t
by t = S.([]) waiting_list (i+1))) };
assert { forall tick1 tick2. mem tick1 waiting_list at Step
-> mem tick2 waiting_list at Step
-> tick1.v < tick2.v
-> tick1.b <> tick2.b
by S.length waiting_list at Step <= n < 2*n - 1 <= k*n - 1
so 0 < tick2.v - tick1.v < k*n
so mod (tick2.v - tick1.v) (k*n) <> 0
so mod tick1.v (k*n) <> mod tick2.v (k*n) };
assert { forall t. mem t waiting_list ->
match owners[t.b] with
| None -> false
| Some n ->
(pcs[n] = A2
/\ memo[n] = Some t)
by t <> tick
so t.b <> tick.b
so th <> n
so pcs[n] = pcs[n] at Step
so memo[n] = memo[n] at Step end };
assert { numof pcs A2 0 n at Step = numof pcs A2 0 n + 1
by numof pcs A2 0 n at Step
= numof pcs[th <- A2] A2 0 n };
assert { forall t. mem t waiting_list ->
!next.v - S.length waiting_list <= t.v
by mem t waiting_list at Step
so t <> tick
so waiting_list at Step
= cons tick waiting_list
so !next.v - S.length waiting_list at Step = tick.v
so !next.v - S.length waiting_list at Step < t.v };
assert { if S.length waiting_list = 0
then true
else let t = S.get waiting_list 0 in
let l = waiting_list[1 .. ] in
hd waiting_list = Some t
/\ t.v = !next.v - S.length waiting_list
by waiting_list at Step
= cons tick (cons t l)
so consecutive waiting_list at Step
so t.v = tick.v + 1 };
end
end
| A3 -> pcs[th] <- W
| W -> pcs[th] <- R1 (* move to release *)
| R1 ->
match memo[th] with
| None -> absurd
| Some tick ->
assert { forall b'. 0 <= b' < k*n -> pass[b'] -> b' = tick.b };
pass[tick.b] <- false;
pcs[th] <- R2
end
| R2 ->
match memo[th] with
| None -> absurd
| Some tick ->
let nt = mod (tick.b + 1) (k*n) in
assert { forall b. 0 <= b < k*n -> not pass[b]
by !active_tick = Some tick };
lock_holder := -1;
pass[nt] <- true;
assert { forall b. 0 <= b < k*n -> pass[b] -> b = nt };
memo[th] <- None;
assert { owners[tick.b] = Some th };
owners[tick.b] <- None;
active_tick := None;
pcs[th] <- I;
assert { nt = mod (tick.v + 1) (k*n)
by let d = div tick.v (k*n) in
tick.v = (k*n) * d + tick.b
so mod (tick.v + 1) (k*n)
= mod ((k*n) * d + (tick.b + 1)) (k*n)
= mod (tick.b + 1) (k*n) = nt };
assert { if S.length waiting_list = 0
then pass[!next.b] = true
by !next.v = tick.v + 1
so !next.b = nt
/\
exists th. memo[th] = None
else let x = S.get waiting_list 0 in
pass[x.b]
by x.v = tick.v + 1
so x.b = nt
};
assert { forall th'. 0 <= th' < n ->
th <> th' ->
match memo[th'] with
| None -> true
| Some tick1 -> mem tick1 waiting_list
by waiting_list = waiting_list at Step
so (mem tick1 waiting_list at Step
\/ !active_tick at Step = Some tick1)
so tick <> tick1
so !active_tick at Step <> Some tick1
end };
end
end
done
end