Files
why3/examples/topological_sorting.mlw
Jean-Christophe Filliatre 144865a118 no more libraries appmap and impmap
fixes #409
2020-02-11 17:56:34 +01:00

235 lines
6.9 KiB
Plaintext

(** Topological sorting
Author: François Bobot (CEA)
*)
theory Graph
use export int.Int
use set.Fset as S
use map.Map as M
(* the graph is defined by a set of vertices and a set of edges *)
type vertex
type graph
function vertices graph: S.fset vertex
function edges graph: S.fset (vertex , vertex)
axiom edges_use_vertices:
forall g:graph. forall x y:vertex.
S.mem (x,y) (edges g) -> (S.mem x (vertices g) /\ S.mem y (vertices g))
(** direct predecessors *)
function preds graph vertex: S.fset vertex
axiom preds_def: forall g:graph. forall v:vertex. forall u:vertex.
S.mem (u,v) (edges g) <-> S.mem u (preds g v)
(** direct successors *)
function succs graph vertex: S.fset vertex
axiom succs_def: forall g:graph. forall v:vertex. forall u:vertex.
S.mem (u,v) (edges g) <-> S.mem v (succs g u)
type msort = M.map vertex int
predicate sort (g: graph) (m:msort) =
forall v:vertex. forall u:vertex.
S.mem (u,v) (edges g) ->
(M.get m u) < (M.get m v)
end
module ImpmapNoDom
use map.Map
use map.Const
type key
type t 'a = abstract { mutable contents: map key 'a }
val function create (x: 'a): t 'a
ensures { result.contents = const x }
val function ([]) (m: t 'a) (k: key): 'a
ensures { result = m.contents[k] }
val ghost function ([<-]) (m: t 'a) (k: key) (v: 'a): t 'a
ensures { result.contents = m.contents[k <- v] }
val ([]<-) (m: t 'a) (k: key) (v: 'a): unit
writes { m }
ensures { m = (old m)[k <- v] }
end
(** static topological sorting by depth-first search *)
module Static
use ref.Ref
use Graph
use set.Fset as Fset
clone set.SetImp as S with type elt = vertex
clone set.SetApp as SA with type elt = vertex
clone ImpmapNoDom with type key = vertex
val ghost function defined_sort (m: t int): Fset.fset vertex
ensures { forall v: vertex [Fset.mem v result].
Fset.mem v result <-> 0 <= m[v] }
val get_preds (g: graph) (v: vertex): S.set
ensures { result.S.to_fset = preds g v }
val get_vertices (g: graph): S.set
ensures { result.S.to_fset = vertices g }
predicate partial_sort (g: graph) (m: t int) =
forall v:vertex. forall u:vertex.
Fset.mem (u,v) (edges g) -> 0 <= m[v] -> 0 <= m[u] < m[v]
exception Cycle_found
predicate inv (g: graph) (m: t int) (next: int) =
Fset.subset (defined_sort m) (vertices g) &&
0 <= next &&
partial_sort g m &&
forall v:vertex. Fset.mem v (defined_sort m) -> m[v] < next
let rec dfs (g: graph) (v: vertex) (seen: SA.set) (values: t int) (next: ref int): unit
requires { inv g values !next }
requires { Fset.mem v (vertices g) }
requires { Fset.subset seen.SA.to_fset (vertices g) }
variant { Fset.cardinal (vertices g) - SA.cardinal seen }
ensures { Fset.subset (defined_sort (old values)) (defined_sort values) }
ensures { 0 <= values[v] <= !next}
ensures { inv g values !next }
ensures { forall x:vertex. SA.mem x seen -> old values[x] = values[x] }
raises { Cycle_found -> true }
=
if SA.mem v seen then raise Cycle_found;
if values[v] < 0 then begin
let p = get_preds g v in
let seen = SA.add v seen in
while not (S.is_empty p) do
invariant { inv g values !next }
invariant { Fset.subset (Fset.diff (preds g v) p.S.to_fset) (defined_sort values) }
invariant { Fset.subset (defined_sort (old values)) (defined_sort values) }
invariant { Fset.subset p.S.to_fset (preds g v) }
invariant { forall x:vertex. SA.mem x seen -> values[x] = old values[x] }
variant { S.cardinal p }
let u = S.choose_and_remove p in
dfs g u seen values next
done;
values[v] <- !next;
next := !next + 1
end
let topo_order (g:graph): t int
raises { Cycle_found -> true }
ensures { sort g result.contents }
=
let next = ref 0 in
let values = create (-1) in
let p = get_vertices g in
while not (S.is_empty p) do
invariant { inv g values !next }
invariant { Fset.subset p.S.to_fset (vertices g) }
invariant { Fset.subset (Fset.diff (vertices g) p.S.to_fset) (defined_sort values) }
variant { S.cardinal p }
let u = S.choose_and_remove p in
dfs g u (SA.empty ()) values next
done;
values
end
module Online_graph
use export Graph
val function add_edge (g: graph) (u v: vertex): graph
ensures { forall x.
preds result x = if x = v then S.add u (preds g v) else preds g x }
ensures { forall x.
succs result x = if x = u then S.add v (succs g u) else succs g x }
end
(**
A New Approach to Incremental Topological Ordering
Michael A. Bender, Jeremy T. Fineman, Seth Gilbert
*)
module Online_Basic
use ref.Ref
use Online_graph
use set.Fset
clone set.SetImp as S with type elt = vertex
clone set.SetApp as SA with type elt = vertex
clone import ImpmapNoDom as M with type key = vertex
val get_succs (g: graph) (v: vertex): S.set
ensures { result.S.to_fset = succs g v }
exception Cycle_found
type t = {
mutable graph : graph;
mutable values: M.t int;
}
predicate inv (g:t) = sort g.graph g.values.contents
let create (g: graph): t
requires { forall x: vertex. Fset.is_empty (preds g x) }
ensures { result.graph = g }
ensures { inv result }
= { graph = g; values = create 0 }
let rec dfs (g: t) (v: vertex) (seen: SA.set) (min_depth: int): unit
requires { inv g }
requires { Fset.mem v (vertices g.graph) }
requires { Fset.subset seen.SA.to_fset (vertices g.graph) }
raises { Cycle_found -> true }
variant { Fset.cardinal (vertices g.graph) - SA.cardinal seen }
ensures { min_depth <= g.values[v] }
ensures { inv g }
ensures { forall x:vertex. SA.mem x seen -> g.values[x] = old g.values[x] }
ensures { forall x:vertex. old g.values[x] <= g.values[x] }
=
if SA.mem v seen then raise Cycle_found;
if g.values[v] < min_depth then begin
let p = get_succs g.graph v in
let seen = SA.add v seen in
while not (S.is_empty p) do
invariant { inv g }
invariant { forall s:vertex. Fset.mem s (succs g.graph v) -> not (S.mem s p) -> min_depth < g.values[s] }
invariant { S.subset p.S.to_fset (succs g.graph v) }
invariant { forall x:vertex. SA.mem x seen -> g.values[x] = old g.values[x] }
invariant { forall x:vertex. old g.values[x] <= g.values[x] }
variant { S.cardinal p }
let u = S.choose_and_remove p in
dfs g u seen (min_depth + 1)
done;
g.values[v] <- min_depth;
end
let add_edge (g: t) (x y: vertex): unit
requires { inv g }
requires { Fset.mem x (vertices g.graph) }
requires { Fset.mem y (vertices g.graph) }
ensures { inv g }
ensures { g.graph = add_edge (old g.graph) x y }
raises { Cycle_found -> true }
=
let seen = SA.empty () in
let seen = SA.add x seen in
dfs g y seen (g.values[x] + 1);
g.graph <- add_edge g.graph x y
end