Files
why3/examples/three_idem_ring.mlw
2019-11-06 15:47:00 +01:00

159 lines
4.5 KiB
Plaintext

(** {1 Three idempotent rings are commutative }
Author: Quentin Garchery (LRI, Université Paris-Sud)
*)
(** {2 Definitions} *)
use int.Int
clone export algebra.Ring with
axiom .
(** Define multiplication by an integer recursively *)
let rec ghost function mul (x : t) (n : int) : t
requires { n >= 0 }
variant { n }
=
if n = 0 then pure{zero} else let r = mul x (n-1) in pure {x + r}
(** We get lemmas from the why3 library *)
clone int.Exponentiation with type t = t,
constant one = zero, function ( * ) = (+), function power = mul,
lemma .
(** {2 General results about rings} *)
(** First results : *)
lemma simpl_left :
forall x y z. x + y = x + z -> y = z
by (-x) + (x + y) = (-x) + (x + z)
lemma simpl_right :
forall x y z. y + x = z + x -> y = z
by y + x + (-x) = z + x + (-x)
lemma zero_star_l :
forall x. zero * x = zero
lemma zero_star_r :
forall x. x * zero = zero
lemma neg_star_r :
forall x y. x * (-y) = - (x * y)
by x * y + x * (-y) = x * y + (- (x * y))
lemma neg_star_l :
forall x y. (-x) * y = - (x * y)
by x * y + (-x) * y = x * y + (- (x * y))
lemma neg_neg :
forall x. - (- x) = x
(** Lemmas about nullable elements : *)
predicate null (x : t) (n : int) = mul x n = zero
lemma null_add :
forall x x' n. 0 <= n -> null x n -> null x' n -> null (x + x') n
let rec lemma mul_star_l (x y : t) (n : int)
requires { 0 <= n }
variant { n }
ensures { mul (x * y) n = (mul x n) * y }
=
if n <> 0 then mul_star_l x y (n-1)
let rec lemma mul_star_r (x y : t) (n : int)
requires { 0 <= n }
variant { n }
ensures { mul (x * y) n = x * (mul y n) }
=
if n <> 0 then mul_star_r x y (n-1)
lemma null_star_l :
forall x y n. 0 <= n -> null x n -> null (x * y) n
lemma null_star_r :
forall x y n. 0 <= n -> null y n -> null (x * y) n
lemma null_mul_congr :
forall x k km. k > 0 -> km > 0 -> null x k -> mul x (Int.(+) km k) = mul x km
(** {2 ThreeIdem axiom specific results} *)
(** We now add the following axiom and want to prove the commutative property : *)
axiom ThreeIdem : forall x. x * x * x = x
(** Split the problem in two :
one where the ring has characteritic 2
and another where the ring has characteristic 3 *)
(** First show that the characteristic of the ring divides 6 ... *)
lemma all_null6 :
forall x. null x 6
by (x + x) * (x + x) * (x + x) = mul (x * x * x) 8
so mul x 8 = zero + x + x /\ mul x 8 = mul x 6 + x + x
(** ... use it to show we can split the problem in two ...*)
lemma all_split :
forall x. (exists y z. x = y + z /\ null y 2 /\ null z 3)
by let y = mul x 3 in
let z = mul (-x) 2 in
x = y + z /\ null y 2 /\ null z 3
(** ... and show that the two problems are independent *)
lemma free_split :
forall x. null x 2 -> null x 3 -> x = zero
(** Show the commutative property in characteristic 2 : *)
lemma null_2_idem :
forall x. null x 2 -> x * x = x
by (x + x * x) * (x + x * x) = zero
so (x + x * x) * (x + x * x) * (x + x * x) = zero
so x + x * x = zero
lemma null2_comm :
forall x y. null x 2 -> null y 2 -> x * y = y * x
by (x + y) * (x + y) = x * x + y * y + x * y + y * x
so x + y = x + y + x * y + y * x
(** Show the commutative property in characteristic 3 : *)
lemma swap_equality :
forall x y. null x 3 -> null y 3 ->
y * y * x + y * x * y + x * y * y = zero
by (forall x y. y * y * x + y * x * y + x * y * y +
x * x * y + x * y * x + y * x * x = zero
by ((x + y) * (x + y) * (x + y) = x * x * x + y * y * y + y * y * x +
y * x * y + x * y * y + x * x * y + x * y * x + y * x * x
so x + y + zero = x + y + (y * y * x +
y * x * y + x * y * y + x * x * y + x * y * x + y * x * x)))
so y * y * x + y * x * y + x * y * y + x * x * y + x * y * x + y * x * x = zero
so (y * y * x + y * x * y + x * y * y +
(- (x * x * y)) + (- (x * y * x)) + (- (y * x * x)) = zero
by (-y) * (-y) * x + (-y) * x * (-y) + x * (-y) * (-y) +
x * x * (-y) + x * (-y) * x + (-y) * x * x = zero)
so mul (y * y * x) 2 + mul (y * x * y) 2 + mul (x * y * y) 2 = zero
so mul (y * y * x) 4 + mul (y * x * y) 4 + mul (x * y * y) 4 = zero
lemma null3_comm :
forall x y. null x 3 -> null y 3 -> x * y = y * x
by y * x + y * y * x * y + y * x * y * y = x * y + y * y * x * y + y * x * y * y
(** Finally, combine the previous results to show the commutative property. *)
lemma commutative :
forall x y. x * y = y * x
by exists x2 x3 y2 y3. x = x2 + x3 /\ y = y2 + y3 /\ null x2 2 /\ null y2 2 /\
null x3 3 /\ null y3 3
so x2 * y3 = zero /\ y3 * x2 = zero /\ x3 * y2 = zero /\ y2 * x3 = zero