Files
why3/examples/stdlib/array/array_ArrayPermut_exchange_permut_sub_1.v
2024-05-31 14:17:56 +02:00

246 lines
10 KiB
Coq

(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import BuiltIn.
Require BuiltIn.
Require HighOrd.
Require int.Int.
Require map.Map.
Require map.Occ.
Require map.MapPermut.
Axiom array : forall (a:Type), Type.
Parameter array_WhyType :
forall (a:Type) {a_WT:WhyType a}, WhyType (array a).
Existing Instance array_WhyType.
Parameter elts:
forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a.
Parameter length:
forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z.
Axiom array'invariant :
forall {a:Type} {a_WT:WhyType a},
forall (self:array a), (0%Z <= (length self))%Z.
(* Why3 assumption *)
Definition mixfix_lbrb {a:Type} {a_WT:WhyType a} (a1:array a)
(i:Numbers.BinNums.Z) : a :=
elts a1 i.
Parameter mixfix_lblsmnrb:
forall {a:Type} {a_WT:WhyType a}, array a -> Numbers.BinNums.Z -> a ->
array a.
Axiom mixfix_lblsmnrb'spec'0 :
forall {a:Type} {a_WT:WhyType a},
forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
((length (mixfix_lblsmnrb a1 i v)) = (length a1)).
Axiom mixfix_lblsmnrb'spec :
forall {a:Type} {a_WT:WhyType a},
forall (a1:array a) (i:Numbers.BinNums.Z) (v:a),
((elts (mixfix_lblsmnrb a1 i v)) = (map.Map.set (elts a1) i v)).
Parameter make:
forall {a:Type} {a_WT:WhyType a}, Numbers.BinNums.Z -> a -> array a.
Axiom make_spec :
forall {a:Type} {a_WT:WhyType a},
forall (n:Numbers.BinNums.Z) (v:a), (0%Z <= n)%Z ->
(forall (i:Numbers.BinNums.Z), (0%Z <= i)%Z /\ (i < n)%Z ->
((mixfix_lbrb (make n v) i) = v)) /\
((length (make n v)) = n).
(* Why3 assumption *)
Definition map_eq_sub {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
(a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) :
Prop :=
forall (i:Numbers.BinNums.Z), (l <= i)%Z /\ (i < u)%Z -> ((a1 i) = (a2 i)).
(* Why3 assumption *)
Definition array_eq_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
((length a1) = (length a2)) /\
((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
map_eq_sub (elts a1) (elts a2) l u.
(* Why3 assumption *)
Definition array_eq {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
Prop :=
((length a1) = (length a2)) /\
map_eq_sub (elts a1) (elts a2) 0%Z (length a1).
(* Why3 assumption *)
Definition exchange {a:Type} {a_WT:WhyType a} (a1:Numbers.BinNums.Z -> a)
(a2:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z)
(i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
((l <= i)%Z /\ (i < u)%Z) /\
((l <= j)%Z /\ (j < u)%Z) /\
((a1 i) = (a2 j)) /\
((a1 j) = (a2 i)) /\
(forall (k:Numbers.BinNums.Z), (l <= k)%Z /\ (k < u)%Z -> ~ (k = i) ->
~ (k = j) -> ((a1 k) = (a2 k))).
Axiom exchange_set :
forall {a:Type} {a_WT:WhyType a},
forall (a1:Numbers.BinNums.Z -> a) (l:Numbers.BinNums.Z)
(u:Numbers.BinNums.Z) (i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z),
(l <= i)%Z /\ (i < u)%Z -> (l <= j)%Z /\ (j < u)%Z ->
exchange a1 (map.Map.set (map.Map.set a1 i (a1 j)) j (a1 i)) l u i j.
(* Why3 assumption *)
Definition exchange1 {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(i:Numbers.BinNums.Z) (j:Numbers.BinNums.Z) : Prop :=
((length a1) = (length a2)) /\
exchange (elts a1) (elts a2) 0%Z (length a1) i j.
(* Why3 assumption *)
Definition permut {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
((length a1) = (length a2)) /\
((0%Z <= l)%Z /\ (l <= (length a1))%Z) /\
((0%Z <= u)%Z /\ (u <= (length a1))%Z) /\
map.MapPermut.permut (elts a1) (elts a2) l u.
(* Why3 assumption *)
Definition permut_sub {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a)
(l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z) : Prop :=
map_eq_sub (elts a1) (elts a2) 0%Z l /\
permut a1 a2 l u /\ map_eq_sub (elts a1) (elts a2) u (length a1).
(* Why3 assumption *)
Definition permut_all {a:Type} {a_WT:WhyType a} (a1:array a) (a2:array a) :
Prop :=
((length a1) = (length a2)) /\
map.MapPermut.permut (elts a1) (elts a2) 0%Z (length a1).
(* Why3 goal *)
Theorem exchange_permut_sub {a:Type} {a_WT:WhyType a} :
forall (a1:array a) (a2:array a) (i:Numbers.BinNums.Z)
(j:Numbers.BinNums.Z) (l:Numbers.BinNums.Z) (u:Numbers.BinNums.Z),
exchange1 a1 a2 i j -> (l <= i)%Z /\ (i < u)%Z ->
(l <= j)%Z /\ (j < u)%Z -> (0%Z <= l)%Z -> (u <= (length a1))%Z ->
permut_sub a1 a2 l u.
(* Why3 intros a1 a2 i j l u h1 (h2,h3) (h4,h5) h6 h7. *)
intros a1 a2 i j l u h1 (h2,h3) (h4,h5) h6 h7.
destruct h1 as (h11,h12).
destruct h12 as (ha,(hb,(hc,(hd,he)))).
red. repeat split.
(* eq_sub *)
red. intros. apply he; auto with zarith.
assumption. assumption. auto with zarith. auto with zarith. assumption.
(* permut *)
red. intro v.
assert (Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) j (j+1)
= Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) j (j+1))%Z.
destruct (why_decidable_eq (elts a1 i) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (i+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) j). 2: auto with zarith.
2: ring_simplify (j+1-1)%Z; rewrite <- hc; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) j). 2: auto with zarith.
destruct (why_decidable_eq (elts a1 j) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (i+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) j). 2: auto with zarith.
2: ring_simplify (j+1-1)%Z; rewrite <- hc; assumption.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) j). 2: auto with zarith.
destruct (why_decidable_eq (elts a1 j) v).
rewrite Occ.occ_right_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
rewrite Occ.occ_right_no_add. 2: auto with zarith. 2: ring_simplify (j+1-1)%Z; assumption.
rewrite (Occ.occ_right_no_add v (elts a2) i). 2: auto with zarith.
2: ring_simplify (i+1-1)%Z; rewrite <- hd; assumption.
ring_simplify (i+1-1)%Z. ring_simplify (j+1-1)%Z.
rewrite Occ.occ_empty. 2: auto with zarith. rewrite (Occ.occ_empty v (elts a2) i). 2: auto with zarith.
ring.
generalize (Z.lt_total i j); intros [c|c].
(* i < j *)
assert (Occ.occ v (elts a1) l u = Occ.occ v (elts a1) l i + Occ.occ v (elts a1) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) i u = Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) (i+1) u = Occ.occ v (elts a1) (i+1) j + Occ.occ v (elts a1) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) j u = Occ.occ v (elts a1) j (j+1) + Occ.occ v (elts a1) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) l u = Occ.occ v (elts a2) l i + Occ.occ v (elts a2) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) i u = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) (i+1) u = Occ.occ v (elts a2) (i+1) j + Occ.occ v (elts a2) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) j u = Occ.occ v (elts a2) j (j+1) + Occ.occ v (elts a2) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) l i = Occ.occ v (elts a2) l i).
apply Occ.occ_eq. intros. apply he; auto with zarith.
assert (Occ.occ v (elts a1) (i+1) j = Occ.occ v (elts a2) (i+1) j).
apply Occ.occ_eq. intros; apply he; auto with zarith.
assert (Occ.occ v (elts a1) (j+1) u = Occ.occ v (elts a2) (j+1) u).
apply Occ.occ_eq. intros; apply he; auto with zarith.
auto with zarith.
(* i = j *)
destruct c.
subst j.
apply Occ.occ_eq.
intros k hk.
generalize (Z.eq_dec k i); intros [c|c].
subst k. assumption.
apply he. auto with zarith. assumption. assumption.
(* j < i *)
assert (Occ.occ v (elts a1) l u = Occ.occ v (elts a1) l j + Occ.occ v (elts a1) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) j u = Occ.occ v (elts a1) j (j+1) + Occ.occ v (elts a1) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) (j+1) u = Occ.occ v (elts a1) (j+1) i + Occ.occ v (elts a1) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) i u = Occ.occ v (elts a1) i (i+1) + Occ.occ v (elts a1) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) l u = Occ.occ v (elts a2) l j + Occ.occ v (elts a2) j u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) j u = Occ.occ v (elts a2) j (j+1) + Occ.occ v (elts a2) (j+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) (j+1) u = Occ.occ v (elts a2) (j+1) i + Occ.occ v (elts a2) i u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a2) i u = Occ.occ v (elts a2) i (i+1) + Occ.occ v (elts a2) (i+1) u)%Z.
apply Occ.occ_append. auto with zarith.
assert (Occ.occ v (elts a1) l j = Occ.occ v (elts a2) l j).
apply Occ.occ_eq. intros. apply he; auto with zarith.
assert (Occ.occ v (elts a1) (j+1) i = Occ.occ v (elts a2) (j+1) i).
apply Occ.occ_eq. intros; apply he; auto with zarith.
assert (Occ.occ v (elts a1) (i+1) u = Occ.occ v (elts a2) (i+1) u).
apply Occ.occ_eq. intros; apply he; auto with zarith.
auto with zarith.
(* eq_sub *)
red. intros. apply he; auto with zarith.
Qed.