Files
why3/examples/space_saving.mlw
Guillaume Melquiond 19b2b452d0 Fix typos.
2023-11-23 18:38:17 +01:00

182 lines
6.4 KiB
Plaintext

(** Space-Saving Algorithm
This is an online algorithm to find out frequent elements in a data
stream. Say we want to detect an element occurring more than N/2 times
in a stream of N elements. We maintain two values (x1 and x2) and two
counters (n1 and n2). If the next value is x1 or x2, we increment the
corresponding counter. Otherwise, we replace the value with the smallest
counter with the next value, *and we increment the corresponding counter*.
If the stream contains a value occurring more than N/2 times, it is
guaranteed to be either x1 or x2.
This generalizes to k values being monitored.
The algorithm is described here:
Metwally, A., Agrawal, D., El Abbadi, A.
Efficient Computation of Frequent and Top-k Elements in Data Streams.
ICDT 2005. LNCS vol 3363.
See also mjrty.mlw for a related algorithm.
Author: Jean-Christophe Filliâtre (CNRS)
*)
use int.Int
use int.MinMax
use map.Occ
(** The elements of the stream. The only thing we can do is to test
elements for equality. *)
type elt
val (=) (x y: elt) : bool
ensures { result <-> x = y }
(** We introduce a dummy value in order to initialize variables in the code. *)
val constant dummy: elt
(** We model an online algorithm with a stream `s` of elements
and a function `next` to get the next element from the stream.
The reference `n` is the number of elements retrieved so far. *)
val ghost s: int -> elt
ensures { forall i. result i <> dummy }
val ghost ref n: int
val next () : elt
requires { n >= 0 }
writes { n }
ensures { n = old n + 1 }
ensures { result = s (old n) <> dummy }
(** Let us start gently with k=2 values monitored. *)
let space_saving_2 () : unit
requires { n = 0 }
diverges
= let ref x1 = dummy in
let ref n1 = 0 in
let ref x2 = dummy in
let ref n2 = 0 in
while true do
invariant { n1 + n2 = n >= 0 }
invariant { 0 <= occ x1 s 0 n <= n1 }
invariant { 0 <= occ x2 s 0 n <= n2 }
invariant { if n1 = 0 then x1 = dummy else x1 <> dummy }
invariant { if n2 = 0 then x2 = dummy else x2 <> dummy }
invariant { n1 > 0 -> n2 > 0 -> x1 <> x2 }
invariant { forall y. y <> x1 -> y <> x2 -> occ y s 0 n <= min n1 n2 }
(* 1. We show that the desired property is a consequence of the
invariants above: any frequent value v (i.e. occurring strictly
more than min(n1, n2) times) is either x1 or x2. *)
assert { [@expl:thm] forall v. occ v s 0 n > min n1 n2 -> v = x1 || v = x2 };
(* and beside, we have min(n1, n2) <= n/2 (from the first invariant)
so any value occurring >n/2 times is either x1 or x2. *)
assert { [@expl:thm] forall v. 2 * occ v s 0 n > n -> v = x1 || v = x2 };
(* 2. Read the next value and update the state. *)
let x = next () in
if x = x1 then n1 <- n1 + 1
else if x = x2 then n2 <- n2 + 1
else if n1 <= n2 then (x1 <- x; n1 <- n1 + 1)
else (x2 <- x; n2 <- n2 + 1)
done
(** Note: for k=2 (i.e. two values monitored), this is less precise
than MJRTY (see mjrty.mlw). Indeed, Space-Saving only tells us
that a value with more than N/2 occurrences, if any, is either x1
or x2, while MJRTY determines what would be this value. *)
(** Now we go for the general case of `k` values being monitored,
for any k >= 2. *)
use array.Array
use array.ArraySum
(** The index for the minimum value of a non-empty array. *)
let function minimum (a: array int) : (m: int)
requires { length a > 0 }
ensures { 0 <= m < length a }
ensures { forall i. 0 <= i < length a -> a[m] <= a[i] }
= let ref m = 0 in
for i = 1 to length a - 1 do
invariant { 0 <= m < length a }
invariant { forall j. 0 <= j < i -> a[m] <= a[j] }
if a[i] < a[m] then m <- i
done;
return m
predicate occurs (v: elt) (a: array elt) =
exists i. 0 <= i < length a /\ v = a[i]
(** It is a bit of a pity that we have to split sums like this to help
SMT solvers... *)
let increment (ghost k: int) (c: array int) (i: int) (ghost n: int) : unit
requires { 0 <= i < length c = k }
requires { sum c 0 k = n - 1 }
ensures { c[i] = old c[i] + 1 }
ensures { forall j. 0 <= j < k -> j <> i -> c[j] = old c[j] }
ensures { sum c 0 k = n }
= assert { sum c 0 k = sum c 0 i + sum c i (i+1) + sum c (i+1) k };
c[i] <- c[i] + 1;
assert { sum c 0 k = sum c 0 i + sum c i (i+1) + sum c (i+1) k }
(** Finds x in array e of size k, or returns k if not present. *)
let find (k: int) (x: elt) (e: array elt) : (i: int)
requires { length e = k }
ensures { 0 <= i <= k }
ensures { forall j. 0 <= j < i -> e[j] <> x }
ensures { i < k -> e[i] = x }
= for i = 0 to k-1 do
invariant { forall j. 0 <= j < i -> e[j] <> x }
if e[i] = x then return i
done;
return k
(** Let us help SMT solvers with non-linear arithmetic. *)
let lemma minimum_k (k: int) (c: array int) (n: int)
requires { length c = k >= 2 }
requires { sum c 0 k = n >= 0 }
ensures { k * c[minimum c] <= n }
= let m = minimum c in
for i = 0 to k - 1 do invariant { i * c[m] <= sum c 0 i } () done
(** Space-Saving Algorithm with `k` values being monitored. *)
let space_saving_k (k: int) : unit
requires { k >= 2 }
requires { n = 0 }
diverges
= let ref e = Array.make k dummy in
let ref c = Array.make k 0 in
while true do
invariant { sum c 0 k = n >= 0 }
invariant { forall i. 0 <= i < k -> 0 <= occ e[i] s 0 n <= c[i] }
invariant { forall i. 0 <= i < k ->
if c[i] = 0 then e[i] = dummy else e[i] <> dummy }
invariant { forall i. 0 <= i < k -> c[i] > 0 ->
forall j. 0 <= j < k -> c[j] > 0 -> i <> j -> e[i] <> e[j] }
invariant { forall y. (forall i. 0 <= i < k -> y <> e[i]) ->
occ y s 0 n <= c[minimum c] }
(* 1. We show that the desired property is a consequence of the
invariants above: any frequent value `v` (i.e. occurring strictly
more than min(c) times) is in `e`. *)
assert { [@expl:thm] forall v. occ v s 0 n > c[minimum c] -> occurs v e };
(* and beside, we have min(c) <= n/k (from the first invariant) *)
minimum_k k c n;
(* so any value occurring >n/k times is in `e`. *)
assert { [@expl:thm] forall v. k * occ v s 0 n > n -> occurs v e
by k * occ v s 0 n > k * c[minimum c] };
(* 2. Read the next value and update the state. *)
let x = next () in
let i = find k x e in
if i < k then
increment k c i n
else (
let m = minimum c in
e[m] <- x;
increment k c m n;
)
done